Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23050097-10    https://doi.org/10.11896/cldb.23050097
  无机非金属及其复合材料 |
锂离子电池硬炭负极的储锂机理及储锂性能优化进展
舒琦琪, 连斐, 梁陈利, 张庆堂*
兰州理工大学石油化工学院,兰州 730050
Progress in Lithium Storage Mechanism and Optimizing Lithium Storage Performance of Hard Carbon Anodes for Lithium-ion Batteries
SHU Qiqi, LIAN Fei, LIANG Chenli, ZHANG Qingtang*
School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 35344KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硬炭负极因其高比容量、高倍率快充和不析锂无膨胀等特性而具有良好的研究价值和应用前景,其对锂离子电池(LIBs)的性能起到关键作用。近年来,众多学者对硬炭负极展开了大量研究,尤其是硬炭的储锂机理和储锂性能的优化策略。本文首先概述了硬炭的形成过程和储锂机理,为设计高性能硬炭负极提供理论基础和科学依据;其次分别基于生物质和聚合物两类前驱体,综述了硬炭负极在制备工艺、结构调控、形貌设计和杂原子掺杂等改性策略上的最新进展,并提出共轭微孔聚合物硬炭有望作为未来硬炭储锂性能优化的方向之一;最后探讨了硬炭作为LIBs负极面临的挑战和未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
舒琦琪
连斐
梁陈利
张庆堂
关键词:  锂离子电池  硬炭  负极  储锂机理  性能优化    
Abstract: The hard carbon anode has significant research value and promising application prospects due to its excellent specific capacity, high-rate fast charging capability, absence of lithium branches crystal, and lack of volume expansion behavior. It plays a crucial role in the electrochemical performance of lithium-ion batteries (LIBs). In recent years, numerous scholars have conducted extensive research on hard carbon anodes, particularly focusing on the lithium storage mechanism and the optimizing strategies of lithium storage performance. This article provides an overview of the formation process and lithium storage mechanism of hard carbon. It offers a theoretical foundation and scientific basis for designing high-performance hard carbon anodes. This paper subsequently summarizes the latest advancements in preparation techniques, structural regulation, morphology design, and heteroatom doping for modifying hard carbon anodes. These advancements are based on two categories of precursors:biomass and polymers. Furthermore, conjugated microporous polymers hard carbon is proposed as a future direction for optimizing lithium storage performance. Finally, the challenges and future research directions for hard carbon as anodes are discussed.
Key words:  lithium-ion batteries    hard carbon    anode    lithium storage mechanism    performance optimization
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TM912  
基金资助: 国家自然科学基金(21968016;21466020)
通讯作者:  *张庆堂,工学博士,兰州理工大学石油化工学院教授、硕士研究生导师。2000年毕业于信阳师范大学化学系,获理学学士学位。2003年毕业于中山大学物理科学与工程技术学院物理系,获工学硕士学位,同年进入中国科学院成都有机化学研究所工作。2005年开始在该所攻读博士学位,2008年获工学博士学位,同年进入兰州理工大学石油化工学院工作。目前主要从事锂离子电池电极材料、纳米功能材料的合成及在化学电源方面的应用研究。在Journal of Materials Chemistry A、 Electrochimica Acta、Journal of Alloys and Compounds等著名学术期刊上发表SCI/EI收录学术论文近50篇;申请发明专利13项,已授权9项。zhqt137@163.com   
作者简介:  舒琦琪,2019年于攀枝花学院获得工学学士学位,同年进入成都拓利科技担任研发工程师。2021年至今为兰州理工大学石油化工学院硕士研究生,在张庆堂教授的指导下进行研究。目前主要研究领域为锂离子电池硬炭负极材料。
引用本文:    
舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
SHU Qiqi, LIAN Fei, LIANG Chenli, ZHANG Qingtang. Progress in Lithium Storage Mechanism and Optimizing Lithium Storage Performance of Hard Carbon Anodes for Lithium-ion Batteries. Materials Reports, 2024, 38(13): 23050097-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050097  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23050097
1 Wang G, Yu M H, Feng X L. Chemical Society Reviews, 2021, 50, 2388.
2 Wang C Y, Yang X G, Ge S H, et al. Nature, 2022, 611, 485.
3 Poizot P, Laruelle S, Grugeon S, et al. Nature, 2000, 407, 496.
4 Lu L L, Lu Y Y, Zhu Z X, et al. Science Advances, 2022, 8(17), 6624.
5 Masias A, Marcicki J, Paxton W A. ACS Energy Letters, 2021, 6(2), 621.
6 Liu K, Liu Y Y, Lin D C, et al. Science Advances, 2018, 4(6), 9820.
7 Ge S H, Leng Y J, Liu T, et al. Science Advances, 2020, 6(9), 7633.
8 Liu Y Y, Zhu Y Y, Cui Y. Nature Energy, 2019, 4, 540.
9 Xia H R, Zhang W, Cao S K, et al. ACS Nano, 2022, 16(6), 8525.
10 Chen X L, Ma Y Y. Technologies, 2018, 3(10), 1800041.
11 Fang R P, Chen K, Yin L C, et al. Advanced Materials, 2019, 31(9), 1800863.
12 Li L, Zhang D, Deng J P, et al. Carbon, 2021, 183(15), 721.
13 Li S Q, Wang K, Zhang G F, et al. Advanced Functional Materials, 2022, 32(23), 2200796.
14 Chen Z C, Liu Y, Zhang Y Z, et al. Materials Letters, 2018, 229(15), 134.
15 Zhang X T, Yuan Y F, Zhu M, et al. Nanotechnology, 2020, 31(28), 285402.
16 Cheng D J, Zhou X Q, Hu H Y, et al. Carbon, 2021, 182, 758.
17 Long W Y, Fang B Z, Lgnaszak A, et al. Chemical Society Reviews, 2017, 46, 7176.
18 Zhu Z Y, Xu Z. Renewable and Sustainable Energy Reviews, 2020, 134, 110308.
19 Amina K, Ashrafa N, Mao L, et al. Nano Energy, 2021, 85, 105958.
20 Yuan M M, Liu H J, Fen R. Materials Today, 2023, 63, 360.
21 Du W R, Du X F, Ma M B, et al. Advanced Functional Materials, 2022, 32(21), 2110871.
22 Yun F L, Liu S Y, Gao M, et al. Journal of Energy Chemistry, 2023, 79, 301.
23 Jin C B, Nai J W, Sheng O W, et al. Energy & Environmental Science, 2021, 14, 1326.
24 Xie L J, Tang C, Song M X, et al. Journal of Energy Chemistry, 2022, 72, 554.
25 Xie L J, Tang C, Bi Z H, et al. Advanced Energy Materials, 2021, 11(38), 2101650.
26 Lee J S, Cooper A I. Chemical Reviews, 2020, 120(4), 2171.
27 Wang Y B, Chen J, Yan W, et al. Progress in Chemistry, 2021, 33(5), 838(in Chinese).
王玉冰, 陈杰, 延卫, 等. 化学进展, 2021, 33(5), 838.
28 Zhao L F, Hu Z, Lai W H, et al. Advanced Energy Materials, 2021, 11(1), 2002704.
29 Saurel D, Orayech B, Xiao B W, et al. Advanced Energy Materials, 2018, 8(17), 1703268.
30 Qiu T, Tang W, Han X, et al. Chemical Engineering Journal, 2023, 466, 143149.
31 Byon H R, Gallant B M, Lee S W, et al. Advanced Functional Materials, 2013, 23(8), 1037.
32 Ventosa E, Xia W, Klink S, et al. Electrochimica Acta, 2012, 65(30), 22.
33 Chong Y, Rui X, Ye X, et al. Advanced Functional Materials, 2020, 30(23), 1909887.
34 Wu Y Q, Xie L Q, Ming H, et al. ACS Energy Letters, 2020, 5(3), 807.
35 Yu C X, Li Y, Ren H H, et al. Carbon Energy, 2023, 5(1), e220.
36 Wang H, Shao Y, Mei S L, et al. Chemical Reviews, 2020, 120(17), 9363.
37 Feng X, Bai Y, Liu M Q, et al. Energy & Environmental Science, 2021, 14, 2036.
38 Kubota K, Shimadzu S, Yabuuchi N, et al. Chemistry of Materials, 2020, 32(7), 2961.
39 Yang J Y, Zhai Y X, Zhang X H, et al. Advanced Energy Materials, 2021, 11(29), 2100856.
40 Xie J, Lu Y C. Nature Communications, 2020, 11, 2499.
41 Olsson E, Cottom J, Cai Q. Small, 2021, 17(18), 2007652.
42 Xie F, Xu Z, Guo Z Y, et al. Progress in Energy, 2020, 2(4), 042002.
43 Franklin R E. The Royal Society, 1951, 209(1097), 196.
44 Ban L L, Crawford D, Mrash H. Journal of Applied Crystallography, 1975, 8, 415.
45 Townsend S J, Lenosky T J, Muller D A, et al. Physical Review Letters, 1992, 69(6), 921.
46 Terzyk A P, Furmaniak S, Harris P J F, et al. Physical Chemistry Che-mical Physics, 2007, 9(44), 5919.
47 Gao Y L, Pan Z H, Sun J G, et al. Nano-Micro Letters, 2022, 14(1), 94.
48 Eng A Y S, Soni C B, Lum Y W, et al. Science Advances, 2022, 8(19), 2422.
49 Dou X W, Hasa L, Saurel D, et al. Materials Today, 2019, 23, 87.
50 Winter M, Besenhard J O, Spahr M E, et al. Advanced Materials, 1998, 10(10), 725.
51 Buiel E R, George A E, Dahn J R. Carbon, 1999, 37(9), 1399.
52 Stevens D A, Dahn J R. Journal of The Electrochemical Society, 2001, 148(8), A803.
53 Yang G J, Li X Y, Guan Z, et al. Nano Letters, 2020, 20(5), 3836.
54 Huang S F, Li Z P, Wang B, et al. Advanced Functional Materials, 2018, 28(10), 1706294.
55 Alvin S, Cahyadi H S, Hwang J, et al. Advanced Energy Materials, 2020, 10(20), 2000283.
56 Guo S S, Chen Y X, Dong Y, et al. Applied Surface Science, 2018, 437(15), 136.
57 Dai X H, Fan H X, Zhang J J, et al. Electrochimica Acta, 2019, 319, 277.
58 Zhang X, Hu J B, Chen X Y, et al. Journal of Porous Materials, 2019, 26(6), 1821.
59 Zhang Y J, Li X, Dong P, et al. ACS Applied Materials & Interfaces, 2018, 10(49), 42796.
60 Kim J H, Jung M J, Kim M J, et al. Journal of Industrial and Engineering Chemistry, 2018, 61(25), 368.
61 Drews M, Buttner J, Bauer M, et al. ChemElectroChem, 2021, 8(24), 4750.
62 Xiang J Y, Lv W M, Mu C P, et al. Journal of Alloys and Compounds, 2017, 701(15), 870.
63 Xu K Q, Li Y S, Xiong J W, et al. Frontiers in Chemistry, 2018, 6, 366.
64 Wu Z R, Wang L P, Huang J, et al. Electrochimica Acta, 2019, 306(20), 446.
65 Xiao B W, Soto F A, Gu M, et al. Advanced Energy Materials, 2018, 8(24), 1801441.
66 Adams R A, Varma A, Pol V G. Advanced Energy Materials, 2019, 9(35), 1900550.
67 Fromm O, Heckman A, Rodehorst U C, et al. Carbon, 2018, 128, 147.
68 Song M X, Yi Z L, Xu R, et al. Energy Storage Materials, 2022, 51, 620.
69 Sun D, Luo B, Wang H Y, et al. Nano Energy, 2019, 64, 103937.
70 Dutta S, Bhaumik A, Wu K C W. Energy & Environmental Science, 2014, 7, 3574.
71 Tian W J, Zhang H Y, Duan X G, et al. Advanced Functional Materials, 2020, 30(17), 1909265.
72 Kizzire D G, Richter A M, Harper D P, et al. ACS Omega, 2021, 6(30), 19883.
73 Ko M, Chae S, Ma J, et al. Nature Energy, 2020, 5(4), 344.
74 Paraknowitsch J P, Thomas A. Energy & Environmental Science, 2013, 6, 2839.
75 Schon T B, Tilley A J, Bridges C R, et al. Advanced Functional Materials, 2016, 26(38), 6896.
76 Ou J, Yang L, Zhang Z. Powder Technology, 2019, 344(15), 89.
77 Elizabath I, Singh B P, Trikha S, et al. Journal of Power Sources, 2016, 329(15), 412.
78 Ou J, Yang L, Zhang Z, et al. Journal of Power Sources, 2016, 333(30), 193.
79 Li R Z, Huang J F, Li J Y, et al. International Journal of Energy Research, 2020, 44(5), 4026.
80 Wan H R, He T T, Chen T, et al. Journal of Alloys and Compounds, 2020, 863(15), 158078.
81 Wan B S, Zhang H Y, Tang S, et al. Sustainable Energy & Fuels, 2022, 6, 4338.
82 Wan H R, Hu X F J. Journal of Colloid and Interface Science, 2020, 558(15), 242.
83 Tan M C, Zhang W H, Fan C L, et al. Energy Technology, 2019, 7(3), 1801164.
84 Yang M M, Kong Q Q, Feng W, et al. Carbon, 2021, 176, 71.
85 Liu Y, Dai H D, Wu L, et al. Advanced Energy Materials, 2019, 9(34), 1901379.
86 Muruganantham R, Wang F M, Liu W R. Electrochimica Acta, 2022, 424(20), 140573.
87 Wan H R, Hu X F. International Journal of Hydrogen Energy, 2019, 44(39), 22250.
88 Chen M, Wang W, Liang X, et al. Advanced Energy Materials, 2018, 8(19), 1800171.
89 Ding J, Zhang Y, Huang Y D, et al. Journal of Alloys and Compounds, 2021, 851(15), 156791.
90 Xiong J W, Pan Q C, Zheng F H, et al. Frontiers in Chemistry, 2018, 6, 78.
91 Li Z Q, Cai L, Chu K N, et al. Dalton Transactions, 2021, 50, 4335.
92 Yuan Y, Chen Z W, Yu H X, et al. Energy Storage Materials, 2020, 32, 65.
93 Li J H, Cai Y F, Wu H M, et al. Advanced Energy Materials, 2021, 11(15), 2003239.
94 Rao X F, Lou Y T, Chen J, et al. Frontiers in Energy Research, 2020, 8, 3.
95 Zhao L F, Lai W H, Tao Y, et al. Advanced Energy Materials, 2020, 11(1), 2002704.
96 Jafari S M, Khosravi M, Mollazadeh M. Electrochimica Acta, 2016, 203(10), 9.
97 Xu S T, Zhang Z F, Wu T Y, et al. Lonics, 2018, 24, 99.
98 Zhong S Y, Liu H Z, Wei D H, et al. Chemical Engineering Journal, 2020, 395(1), 125054.
99 Piotrowska A, Kierzek K, Rutkowski P, et al. Journal of Analytical and Applied Pyrolysis, 2013, 102, 1.
100 Qian X Y, Zhang F Z, Zhao Y Y, et al. Frontiers in Energy Research, 2020, 8, 140.
101 Cheng J Y, Yi Z L, Wang Z B, et al. Electrochimica Acta, 2020, 337(20), 135736.
102 葛传长, 沈龙, 范拯华, 等. 中国专利, CN109921020A, 2019.
103 侯博, 汪福明, 任建国, 等. 中国专利, CN114843489A. 2020.
104 郑子桂, 易政, 谢远森. 中国专利, CN114843489A, 2022.
105 Zhang Q T, Ge S W, Wang X M, et al. RSC Advances, 2014, 4, 41649.
106 Zhang S L, Huang W, Hu P, et al. Journal of Materials Chemistry A, 2015, 3, 1896.
107 Yu M H, Dong R H, Feng X L. Journal of the American Chemical Society, 2020, 142(30), 12903.
108 Zhang Q T, Sun H X, Wang X M, et al. Energy Technology, 2013, 1(12), 721.
109 Li X W, Sun J Y, Zhao W X, et al. Advanced Functional Materials, 2022, 32(2), 2106980.
110 Wu J X, Pan Z Y, Zhang Y, et al. Journal of Materials Chemistry A, 2018, 6, 12932.
111 Paraknowitsch J P, Thomas A. Energy & Environmental Science, 2013, 6, 2839.
112 Yao Y X, Yan C, Zhang Q. Chemical Communications, 2020, 56(93), 14570.
113 Wang X W, Yang C, Li J, et al. Advanced Functional Materials, 2020, 31(11), 2009109.
114 Zhang Q T, Zhang Y, Lian F, et al. Lonics, 2022, 28, 2623.
115 Zhang Q T, Dai Q Q, Yan C, et al. Journal of Alloys and Compounds, 2017, 714(15), 204.
116 Zhang Q T, Xu Z Q, Bai Y B, et al. Journal of Alloys and Compounds, 2022, 901(25), 163657.
117 Yang C, Jin H L, Cui C X, et al. Nano Energy, 2018, 54, 192.
118 Bai L C, Sun Y F, Tang L, et al. Journal of Alloys and Compounds, 2021, 868, 159080.
119 Jin X, Wang X F, Liu Y L, et al. Small, 2022, 18(42), 2203545.
120 Kim H, Hyun J C, Kim D H, et al. Advanced Materials, 2023, 35(12), 2209128.
121 Zhang Q T, Meng Y, Bai Y B, et al. Journal of Electroanalytical Chemistry, 2020, 862(1), 114013.
122 Li C X, Kong D H, Du H M, et al. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134, 104293.
123 Zhang X J, Zhu G, Wang M, et al. Carbon, 2017, 116, 686.
[1] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[2] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[3] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[4] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[5] 毛晓璇, 冯柳, 吴立清, 辛伍红, 牛金叶. 多孔炭基复合材料用作碱金属离子电池负极的研究进展[J]. 材料导报, 2023, 37(S1): 23020009-12.
[6] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[7] 杨平安, 刘中邦, 李锐, 屈正微, 黄鑫, 寿梦杰, 杨健健, 熊雨婷. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(9): 21060169-14.
[8] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[9] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[10] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[11] 童乐, 王敬丰, 王金星, 瞿佰华, 黄光胜, 潘复生. 可充镁电池负极与电解液相容性的研究进展[J]. 材料导报, 2023, 37(24): 22040273-7.
[12] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[13] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[14] 穆洪亮, 冯柳, 吴立清, 毛晓璇, 刘志超. SiO用作锂离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(18): 21080240-13.
[15] 于贺川, 熊兴宇, 胡仁宗. 低温金属离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(17): 21120080-15.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed