Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21070209-11    https://doi.org/10.11896/cldb.21070209
  无机非金属及其复合材料 |
改性电解液促进均匀锂沉积的研究进展
罗重阳, 李宇杰*, 王丹琴, 刘双科, 陈宇方, 郑春满*
国防科技大学空天科学学院, 长沙 410073
Modifying Electrolytes to Promote Uniform Lithium-ion Deposition: a State-of-art Review
LUO Chongyang, LI Yujie*, WANG Danqin, LIU Shuangke, CHEN Yufang, ZHENG Chunman*
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 17184KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着二次电池的逐渐发展,金属锂为负极的电池体系以其优异的能量密度脱颖而出,但其稳定性和安全性较差的问题亟待解决。电解液作为锂离子在正负极之间传输的载体,决定了锂离子的液相传输过程和迁移速率,同时还会与金属锂负极发生界面反应生成固体电解质界面膜(SEI),电解液的组分变化会极大程度上影响SEI膜的组成和结构。电解液改性能够有效调控金属锂沉积过程,是改善金属锂负极电化学性能的重要途径。本文从电解液对锂离子沉积的影响因素出发,分析了液相传质、SEI膜的形成、电荷转移等基本过程对锂离子沉积的调控机理,总结归纳了溶剂分子、锂盐浓度、添加剂等对金属锂沉积过程的影响,介绍了溶剂混用、复合锂盐、局部高浓度电解液、双功能添加剂等电解液改性促进均匀锂沉积的方法,分析了各种改性方法对实现均匀锂沉积的作用机理,并展望了这些方法的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗重阳
李宇杰
王丹琴
刘双科
陈宇方
郑春满
关键词:  电解液  锂负极  枝晶  固体电解质界面膜  锂沉积  锂硫电池  锂空气电池    
Abstract: With the gradual development of rechargeable batteries, lithium metal batteries have attracted increasing attention due to their excellent energy density, but the problems regarding poor stability and safety of lithium metal anode need to be solved urgently. The electrolyte, as the carrier for lithium-ion transportation between anodes and cathodes, determines the liquid phase transfer process and migration rate of lithium ions. Meanwhile, it also reacts with the lithium metal anode to form a solid electrolyte interface (SEI), and different compositions of electrolytes will greatly affect the composition and structure of the SEI. Electrolyte modification is an important way to improve the electrochemical performance of lithium metal anode and can effectively regulate the deposition process of lithium. Starting from the influence of electrolytes on the deposition of lithium-ion, this paper analyzes the regulation mechanism of transfer of lithium-ion in solution, SEI, charge transfer, and other basic processes on the deposition of lithium, and summarizes the effects of solvents, the concentration of lithium salts, and additives on the deposition process of lit-hium. This paper also introduces the methods of promoting homogenous deposition of lithium by the solvent mixture, lithium salt mixture, loca-lized high concentration electrolyte, bifunctional additives. The mechanism of various modification methods on achieving uniform lithium deposition is analyzed, and the development trend of electrolyte modification and stable metal lithium anode is prospected.
Key words:  electrolyte    lithium anode    dendrite    solid electrolyte interface    lithium deposition    lithium-sulfur battery    lithium-oxygen battery
发布日期:  2023-03-27
ZTFLH:  TM911  
基金资助: 装备发展部预先研究基金项目(61407210302)
通讯作者:  *李宇杰,国防科技大学空天科学学院材料科学与工程系副教授、硕士研究生导师。2003年于兰州大学获得本科学位,2006年于国防科技大学获得硕士学位,2010年于国防科技大学获得博士学位。研究方向为新能源材料与器件,主要从事新型锂电池电极材料、长存储寿命锂电池和极端环境用能源材料与器件的研究。在ACS Nano、Nano Energy、Journal of Power Sources等期刊发表学术论文30余篇,其中SCI检索20余篇。获军队科技进步二等奖1项,申请及获授权国家发明专利10余项,出版教材1部。powerlyj@163.com;
郑春满, 国防科技大学空天科学学院材料科学与工程系教授、博士研究生导师。2000年于国防科技大学获得本科学位,2006年于国防科技大学获得博士学位。研究方向为新能源材料与器件,重点开展新型锂电池电极材料、锂-海水电池、极端环境用能源材料与器件等方向研究。获军队科技进步二等奖1项、军队教学成果三等奖1项,获军队优秀专业技术人才三类岗位津贴。在ACS Nano、Nano Energy等期刊发表文章60余篇,其中SCI检索40余篇。获授权发明专利20余项,出版学术专著1部、教材2部。zhengchunman@nudt.edu.cn   
作者简介:  罗重阳,2022年6月毕业于国防科技大学,取得工学硕士学位。现为国防科技大学空天科学学院材料科学与工程系博士研究生,在郑春满教授、李宇杰副教授的指导下进行局部高浓度电解液提升锂金属电池电化学性能的研究。
引用本文:    
罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
LUO Chongyang, LI Yujie, WANG Danqin, LIU Shuangke, CHEN Yufang, ZHENG Chunman. Modifying Electrolytes to Promote Uniform Lithium-ion Deposition: a State-of-art Review. Materials Reports, 2023, 37(6): 21070209-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070209  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21070209
1 Lin D, Liu Y, Cui Y. Nature Nanotechnology, 2017, 12(3), 194.
2 Yao S, Zeng L, Liu J. Materials Reports, 2022, 36(16), 192(in Chinese).
姚诗言, 曾立艳, 刘军. 材料导报, 2022, 36(16), 192.
3 Sun W, Li Y, Liu S, et al. Nano Research, 2020, 13 (2020), 2143.
4 Sun W, Li Y, Liu S, et al. Chemical Engineering Journal, 2021, 416, 129166.
5 Zhu Y, Han Y, Wang H, et al. Ionics, 2020, 26(15), 1.
6 Sun W, Liu C, Li Y, et al. ACS Nano, 2019, 13(10), 12137.
7 Liang J, Luo Z, Yan Y, et al. Materials Reports A: Review Papers, 2018, 32(6), 8 (in Chinese).
梁杰铬, 罗政, 闫钰, 等. 材料导报:综述篇, 2018, 32(6), 8.
8 Chang Z, Qiao Y, Deng H, et al. Joule, 2020, 4(8), 1776.
9 Scheers J, Fantini S, Johansson P. Journal Of Power Sources, 2014, 255, 204.
10 Yang H, Li J, Sun Z, et al. Energy Storage Materials, 2020, 30, 113.
11 Perez Beltran S, Cao X, Zhang J G, et al. Chemistry of Materials, 2020, 32(14), 5973.
12 Xu K. Chemical Reviews, 2014, 114(23), 11503.
13 Ming J, Cao Z, Li Q, et al. ACS Energy Letters, 2019, 4(7), 1584.
14 Yang H, Yin L, Shi H, et al. Chem Commun (Camb), 2019, 55(88), 13211.
15 Qi S, He J, Liu J, et al. Advanced Functional Materials, 2020, 31(11), 2009013.
16 Yamada Y, Furukawa K, Sodeyama K, et al. Journal of the American Chemical Society, 2014, 136(13), 5039.
17 Yamada Y, Yamada A. Journal of the Electrochemical Society, 2015, 162(14), A2406.
18 Suo L M, Borodin O, Gao T, et al. Science, 2015, 350(6263), 938.
19 Fleury V, Chazalviel J N, Rosso M, et al. Journal of Electroanalytical Chemistry, 1990, 290(1-2), 249.
20 Suo L, Hu Y S, Hong L, et al. Nature Communications, 2013, 4(1), 1481.
21 Chen S R, Zheng J M, Yu L, et al. Joule, 2018, 2(8), 1548.
22 Kwak W J, Lim H S, Gao P, et al. Advanced Functional Materials, 2020, 31(2), 2002927.
23 Zheng J, Ji G, Fan X, et al. Advanced Energy Materials, 2019, 9(16), 1803774.
24 Ren X, Chen S, Lee H, et al. Chemistry, 2018, 4(8), 1877.
25 Chen S, Zheng J, Mei D, et al. Advanced Materials, 2018, 30(21), e1706102.
26 Zheng Y, Soto F A, Ponce V, et al. Journal of Materials Chemistry A, 2019, 7(43), 25047.
27 Bai S, Sun Y, Yi J, et al. Joule, 2018, 2(10), 2117.
28 Liu C, Li Y, Peng T, et al. Journal of Power Sources, 2020, 468, 228393.
29 Bai S, Liu X, Zhu K, et al. Nature Energy, 2016, 1(7), 1.
30 Zhang J G, Xu W, Xiao J, et al. Chemical Reviews, 2020, 120(24), 13312.
31 Single F, Horstmann B, Latz A. Physical Chemistry Chemical Physics, 2016, 18(27), 17810.
32 Peled E, Golodnitsky D, Ardel G. Journal of the Electrochemical Society, 1997, 144(8), L208.
33 Shi S, Lu P, Liu Z, et al. Journal of the American Chemical Society, 2012, 134(37), 15476.
34 Jurng S, Brown Z L, Kim J, et al. Energy & Environmental Science, 2018, 11(9), 2600.
35 Wang A, Kadam S, Li H, et al. NPJ Computational Materials, 2018, 4(1), 1.
36 Miao R, Yang J, Feng X, et al. Journal of Power Sources, 2014, 271, 291.
37 Xiang H, Shi P, Bhattacharya P, et al. Journal of Power Sources, 2016, 318, 170.
38 Zhang X Q, Chen X, Cheng X B, et al. Angew Chem Int Ed Engl, 2018, 57(19), 5301.
39 Li W, Yao H, Yan K, et al. Nature Communication, 2015, 6(1), 7436.
40 Blomgren G E. Journal of Power Sources, 2003, 119, 326.
41 Xu G J, Shangguan X H, Dong S M, et al. Angewandte Chemie-International Edition, 2020, 59(9), 3400.
42 Ma G Q, Jiang Z M, Chen H C, et al. Journal of Inorganic Materials, 2018, 33(7), 699.
43 Xue Z G, He D, Xie X L. Journal of Materials Chemistry A, 2015, 3(38), 19218.
44 Sloop S E, Kerr J B, Kinoshita K. Journal of Power Sources, 2003, 119, 330.
45 Bushkova O, Andreev O, Batalov N, et al. Journal of power sources, 2006, 157(1), 477.
46 Xiang H, Shi P, Bhattacharya P, et al. Journal of Power Sources, 2016, 318, 170.
47 Zhang X, Devine T M. Journal of The Electrochemical Society, 2006, 153(9), B365.
48 Park K, Yu S, Lee C, et al. Journal of Power Sources, 2015, 296, 197.
49 Abraham D P, Furczon M M, Kang S H, et al. Journal of Power Sources, 2008, 180(1), 612.
50 Di Censo D, Exnar I, Graetzel M. Electrochemistry Communications, 2005, 7(10), 1000.
51 Paillard E, Iojoiu C, Alloin F, et al. Electrochimica Acta, 2007, 52(11), 3758.
52 Matsumoto K, Inoue K, Nakahara K, et al. Journal of Power Sources, 2013, 231, 234.
53 Myung S T, Yashiro H. Journal of Power Sources, 2014, 271, 167.
54 Shieh D T, Hsieh P H, Yang M H. Journal of Power Sources, 2007, 174(2), 663.
55 Zhang L, Chai L, Zhang L, et al. Electrochimica Acta, 2014, 127, 39.
56 Duncan H, Salem N, Abu-Lebdeh Y. Journal of the Electrochemical Society, 2013, 160(6), A838.
57 Zhang L, Sun Y, Zhou Y, et al. Ionics, 2018, 24(10), 2995.
58 Li X, Zheng J, Engelhard M H, et al. ACS Applied Materials & Interfaces, 2018, 10(3), 2469.
59 Li F, Shangguan X, Jia G, et al. Journal of Solid State Electrochemistry, 2016, 20(12), 3491.
60 Wongittharom N, Lee T C, Hung I M, et al. Journal of Materials Che-mistry A, 2014, 2(10), 3613.
61 Xu K. Chemical Review, 2004, 104(10), 4303.
62 Zhang S S, Xu K, Jow T R. Journal of The Electrochemical Society, 2002, 149(5), A586.
63 Gnanaraj J S, Zinigrad E, Asraf L, et al. Journal of Power Sources, 2003, 119 (2003), 794.
64 Shui Z S. Electrochemistry Communications, 2006, 8(9), 1423.
65 Arai J, Matsuo A, Fujisaki T, et al. Journal of Power Sources, 2009, 193(2), 851.
66 Fu M H, Huang K L, Liu S Q, et al. Journal of Power Sources, 2010, 195(3), 862.
67 Li J, Xie K, Lai Y, et al. Journal of Power Sources, 2010, 195(16), 5344.
68 Xue Z M, Ji C Q, Zhou W, et al. Journal of Power Sources, 2010, 195(11), 3689.
69 Xue Z M, Zhao J F, Ding J, et al. Journal of Power Sources, 2010, 195(3), 853.
70 Zhang Z, Chen X, Li F, et al. Journal of Power Sources, 2010, 195(21), 7397.
71 Allen J L, Han S D, Boyle P D, et al. Journal of Power Sources, 2011, 196(22), 9737.
72 Dahbi M, Ghamouss F, Tran-Van F, et al. Journal of Power Sources, 2011, 196(22), 9743.
73 Niedzicki L, Kasprzyk M, Kuziak K, et al. Journal of Power Sources, 2011, 196(3), 1386.
74 Xue Z M, Zhao B H, Chen C H. Journal of Power Sources, 2011, 196(15), 6478.
75 Arbizzani C, De Giorgio F, Porcarelli L, et al. Journal of Power Sources, 2013, 238, 17.
76 Niedzicki L, Oledzki P, Bitner A, et al. Journal of Power Sources, 2016, 306, 573.
77 Grugeon S, Jankowski P, Cailleu D, et al. Journal of Power Sources, 2019, 427, 77.
78 Haregewoin A M, Wotango A S, Hwang B J. Energy & Environmental Science, 2016, 9(6), 1955.
79 Zhang H, Eshetu G G, Judez X, et al. Angewandte Chemie International Edition, 2018, 57(46), 15002.
80 Yu Y, Yin Y B, Ma J L, et al. Energy Storage Materials, 2019, 18, 382.
81 Zheng G, Xiang Y, Chen S, et al. Energy Storage Materials, 2020, 29, 377.
82 Zhang X Q, Cheng X B, Chen X, et al. Advanced Functional Materials, 2017, 27(10), 1605989.
83 Brown Z L, Heiskanen S, Lucht B L. Journal of the Electrochemical Society, 2019, 166(12), A2523.
84 Pgka B, Mjlc B, Pn A, et al. Journal of Power Sources, 2020, 477, 228567.
85 Zhang X Q, Cheng X B, Chen X, et al. Advanced Functional Materials, 2017, 27(10), 1605989.
86 Ye Y, Song M K, Yan X, et al. Energy Storage Materials, 2018, 16, 498.
87 Xie Z, Wu Z, An X, et al. Chemical Engineering Journal, 2020, 393, 124789.
88 Shangguan X, Xu G, Cui Z, et al. Small, 2019, 15(16), e1900269.
89 Cui Y, Liu S, Liu B, et al. Frontiers in Chemistry, 2020, 7, 952.
90 Qian J, Wu X, Bhattacharya P, et al. Nano Energy, 2015, 15, 135.
91 Ouyang Y, Guo Y, Li D, et al. ACS Applied Materials & Interfaces, 2019, 11(12), 11360.
92 Liu S, Li G R, Gao X P. ACS Applied Materials & Interfaces, 2016, 8(12), 7783.
93 Niu H, Wang L, Guan P, et al. Journal of Energy Storage, 2021, 40, 102659.
94 Hasanpoor M, Eftekharnia M, Pathirana T, et al. ACS Applied Energy Materials, 2021, 4(6), 6310.
95 Hwang J, Okada H, Haraguchi R, et al. Journal of Power Sources, 2020, 453, 227911.
96 Vélez J, Vazquez-Santos M B, Amarilla J M, et al. Electrochimica Acta, 2018, 280, 171.
97 Salimi P, Kowsari E. Journal of Electronic Materials, 2019, 48(4), 2254.
98 Li S, Luo Z, Li L, et al. Energy Storage Materials, 2020, 32, 306.
99 Ding F, Xu W, Graff G L, et al. Journal of the American Chemical Society, 2013, 135(11), 4450.
100 Wang Q, Yang C, Yang J, et al. Advanced Materials, 2019, 31(41), e1903248.
101 Ma Q, Sun X, Liu P, et al. Angewandte Chemie International Edition, 2019, 58(19), 6200.
102 Dai H, Xi K, Liu X, et al. Journal of the American Chemical Society, 2018, 140(50), 17515.
103 Jia W, Fan C, Wang L, et al. ACS Applied Materials & Interfaces, 2016, 8(24), 15399.
104 Ye H, Yin Y X, Zhang S F, et al. Nano Energy, 2017, 36, 411.
105 Jiang Z, Zeng Z, Yang C, et al. Nano Letter, 2019, 19(12), 8780.
106 Cheng X B, Zhao M Q, Chen C, et al. Nature Communication, 2017, 8(1), 336.
107 Kim M S, Ryu J H, Lim Y R, et al. Nature Energy, 2018, 3(10), 889.
[1] 崔春娟, 赵亚男, 刘跃, 武重洋, 张凯, 王妍, 魏剑. 花瓣状纳米硫和球状纳米硫的制备及性能[J]. 材料导报, 2023, 37(5): 21080095-11.
[2] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[3] 赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
[4] 魏士俊, 何润合, 李永兵, 靳艳梅, 张兴祥. 聚丙烯腈分子量对锂硫电池比容量和循环稳定性的影响[J]. 材料导报, 2022, 36(22): 21080285-6.
[5] 胡坤, 郭锦, 张敏刚, 连晋毅, 张怡轩, 李占龙. 金属化合物在锂硫电池正极材料及夹层中的应用[J]. 材料导报, 2022, 36(19): 21010010-11.
[6] 黄晓锋, 张展裕, 尚文涛, 杨凡, 张胜. Mg-7Zn-0.2Ti-xCu镁合金非枝晶组织的演变过程及机理[J]. 材料导报, 2022, 36(18): 21050203-7.
[7] 孙晴, 高筠. 水系锌离子电池的最新研究进展[J]. 材料导报, 2022, 36(17): 20080133-7.
[8] 姚诗言, 曾立艳, 刘军. 高性能锂金属电池负极结构设计及界面强化研究进展[J]. 材料导报, 2022, 36(16): 21010216-11.
[9] 张苗, 魏志祥, 常晶晶. 柔性锂硫电池电极材料的结构设计[J]. 材料导报, 2022, 36(11): 21010030-11.
[10] 冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻. 高性能锂硫电池研究进展与改进策略[J]. 材料导报, 2022, 36(11): 20080027-14.
[11] 王权, 吴长军, 徐雪薇, 彭浩平, 刘亚, 苏旭平. 退火处理对CoxCrFeMnNi2-x高熵合金显微组织和耐蚀性的影响[J]. 材料导报, 2022, 36(11): 21110150-7.
[12] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[13] 杨帅, 刘施峰, 张静, 柳亚辉, 邓超, 祝佳林. 电解液的循环使用对阳极氧化Ta2O5纳米管形貌的影响[J]. 材料导报, 2021, 35(Z1): 112-115.
[14] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[15] 张敏, 郭宇飞, 黄超, 张立胜, 张文辉. Ti-6Al-4V三元合金焊接熔池凝固组织模拟[J]. 材料导报, 2021, 35(8): 8116-8120.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed