Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21010030-11    https://doi.org/10.11896/cldb.21010030
  无机非金属及其复合材料 |
柔性锂硫电池电极材料的结构设计
张苗1, 魏志祥2, 常晶晶1
1 西安电子科技大学前沿交叉研究院,西安 710071
2 国家纳米科学中心纳米系统与多级次制造重点实验室,北京 100190
Structural Design of Electrode Materials for Flexible Lithium-Sulfur Batteries
ZHANG Miao1, WEI Zhixiang2, CHANG Jingjing1
1 Academy of Advanced Interdisciplinary Research, Xidian University,Xi'an 710071, China
2 CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
下载:  全 文 ( PDF ) ( 9014KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柔性电子设备自进入人们的视野以来就备受关注,而与之相适应的、具有更高能量密度的柔性储能器件是促进其发展的关键。在各种新型柔性储能装置中,锂-硫(Li-S)电池具备高能量密度和高理论比容量,是未来柔性电池体系的理想选择之一。近几年,虽然对Li-S电池进行了深入的研究,但是高性能与电极柔性之间的相互制约性阻碍了柔性Li-S电池的进一步发展。本文通过总结柔性Li-S电池的发展现状,以Li-S电池柔性化基底材料制备为主要切入点,对柔性硫正极、柔性锂负极和柔性电池三部分进行阐述。首先分析了构造柔性正极材料的基本方法,然后总结发展新型锂金属宿主材料对实现可变形锂硫电池负极的重要性,阐述柔性电池集成和测试方法对实现柔性Li-S电池未来应用的必要性,最后对柔性Li-S电池的前景进行了展望,分析探讨了其面临的问题及未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张苗
魏志祥
常晶晶
关键词:  锂硫电池  柔性正负极  结构设计  电池集成    
Abstract: Flexible electronic devices have attracted much attention since they came into people's sight. Flexible energy storage device with high energy density is one of the key components to promote the development of flexible electronic devices. In a variety of new flexible energy storage devices, the lithium-sulfur battery with high energy density and theoretical specific capacity is an ideal choice for future flexible battery system. In recent years, lithium-sulfur batteries have been studied in depth; however, due to limitation between high energy density and electrode flexibility, the development of flexible lithium-sulfur batteries have been faced with serious constraints. In this paper, the design of flexible electrode, separators and lithium-sulfur batteries are briefly introduced. Specifically, the basic method of constructing flexible cathode and anode materials is analyzed, the necessity of integration and testing methods in flexible lithium-sulfur batteries for the future application is described, and perspectives regarding the development trend of flexible lithium-sulfur batteries have been discussed. It also includes a prospective discussion upon the challenges and future development trends.
Key words:  lithium-sulfur battery    flexible anode and cathode    structural design    battery integration
发布日期:  2022-06-09
ZTFLH:  TM912  
基金资助: 中央高校基本科研业务费专项资金;陕西省自然科学基础研究计划青年项目(2021JQ-189)
通讯作者:  jjingchang@xidian.edu.cn   
作者简介:  张苗,西安电子科技大学前沿交叉研究院讲师,2019年6月毕业于西安交通大学,获得化学工程与技术专业博士学位,2014年7月至2019年5月在国家纳米科学中心联合培养,目前主要从事高能量密度锂硫电池电极材料研究及柔性储能器件的应用,主持陕西省自然科学基金等多项基金。
常晶晶,教授,博士研究生导师,国家高层次人才计划入选者,2010年6月在四川大学获得理学学士学位,之后在新加坡国立大学攻读博士学位,期间前往新加坡材料研究与工程研究所(IMRE)从事博士课题研究。2014年博士毕业后,继续在新加坡国立大学材料科学与工程系从事博士后研究员工作。2015年通过西安电子科技大学“华山学者菁英人才计划”加入微电子学院。中国科协青年人才托举工程入选者,主持参与国家自然科学基金、国家重点研发计划等项目20余项,包括技术成果转化3项。担任科技部重点研发计划、国家自然科学基金等的评审专家。近年来主要从事有机及金属氧化物半导体晶体管电子器件的制备及研究、柔性印刷器件工艺的优化、有机及钙钛矿太阳能电池的研究工作等。截至目前,在Advanced Mate-rialsAdvanced Energy MaterialsAdvanced ScienceACS Energy LettersAdvanced Electronic MaterialsNano Energy等国际核心期刊上发表SCI论文150余篇,被引用3 000余次,其中中科院一区90余篇。
引用本文:    
张苗, 魏志祥, 常晶晶. 柔性锂硫电池电极材料的结构设计[J]. 材料导报, 2022, 36(11): 21010030-11.
ZHANG Miao, WEI Zhixiang, CHANG Jingjing. Structural Design of Electrode Materials for Flexible Lithium-Sulfur Batteries. Materials Reports, 2022, 36(11): 21010030-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010030  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21010030
1 Li X, Li P, Wu Z,et al. Materials Reports: Energy, 2021,1,100001.
2 Zhou T, Shen J, Wang Z, et al. Advanced Functional Materials, 2020, 30, 1909159.
3 Xu X, Liu J, Liu Z, et al. Small, 2018, 14, 1800793.
4 Zhang L, Ling M, Feng J, et al. Nano Energy, 2017, 40, 559.
5 Li X, Ding K, Gao B, et al. Nano Energy, 2017, 40, 655.
6 Preefer M B, Oschmann B, Hawker C J, et al. Angewandte Chemie International Edition in English, 2017, 56, 15118.
7 Chen J H, Zhang H M, Yang H J, et al. Energy Storage Materials, 2020, 27, 307.
8 Wild M, O'neill L, Zhang T, et al. Energy & Environmental Science, 2015, 8, 3477.
9 Guo J, Xu Y, Wang C. Nano Letters, 2011, 11, 4288.
10 Chung S H, Manthiram A. Electrochimica Acta, 2013, 107, 569.
11 Chung S H, Manthiram A. Advanced Materials, 2014, 26, 1360.
12 Su Y S, Manthiram A. Nature Communication, 2012, 3, 6.
13 Zhou G M, Li L, Wang D W, et al. Advanced Materials,2015,27,641.
14 Duan B C, Wang W K, Wang A B, et al. Journal of Materials Chemistry A, 2013, 1, 13261.
15 Dunn B, Kamath H, Tarascon J M. Science, 2011, 334, 928.
16 Peng H J, Huang J Q, Zhang Q. Chemical Society Reviews,2017,46,5237.
17 Zhu L, Peng H J, Liang J, et al. Nano Energy, 2015, 11, 746.
18 Yuan Z, Peng H J, Huang J Q, et al. Advanced Functional Materials, 2014, 24, 6105.
19 Zhang M, Yang Y, Zhang X, et al. Advanced Materials Interfaces, 2018, 5, 1800766.
20 Kim J H, Lee Y H, Cho S J, et al. Energy & Environmental Science, 2019, 12, 177.
21 Wu J, Wang N, Zhao Y, et al. Journal of Materials Chemistry A, 2013, 1, 7290.
22 Wang H G, Yuan S, Ma D L, et al. Energy & Environmental Science, 2015, 8, 1660.
23 Zhang C L, Yu S H. Chemical Society Reviews, 2014, 43, 4423.
24 Ma L, Zhang W, Wang L, et al. ACS Nano, 2018, 12, 4868.
25 Zhou G, Wang D W, Li F, et al. Energy & Environmental Science, 2012, 5, 8901.
26 Sun L, Li M, Jiang Y, et al. Nano Letters, 2014, 14, 4044.
27 Geim A K, Novoselov K S. Nanoscience and Technology, 2009, 6, 11.
28 Niu S, Lv W, Zhang C, et al. Journal of Power Sources,2015,295,182.
29 Jiang Y, Lu M, Ling X, et al. Journal of Alloys and Compounds, 2015, 645, 509.
30 Wang C, Su K, Wan W, et al. Journal of Materials Chemistry A, 2014, 2, 5018.
31 Peng X, Wang L, Zhang X, et al. Journal of Power Sources, 2015, 288, 214.
32 Shi J L, Tang C, Peng H J, et al. Small, 2015, 11, 5243.
33 Jin J, Wen Z, Ma G, et al. RSC Advances, 2013, 3, 2558.
34 Zhou G, Zhao Y, Manthiram A. Advanced Energy Materials, 2015, 5, 1402263.
35 Wang C, Wang X, Yang Y, et al. Nano Letters, 2015, 15, 1796.
36 He J, Hartmann G, Lee M, et al. Energy & Environmental Science, 2019, 12, 344.
37 Cao J, Chen C, Zhao Q, et al. Advanced Materials, 2016, 28, 9629.
38 Ji L, Rao M, Aloni S, et al. Energy & Environmental Science, 2011, 4, 5053.
39 Yu M, Wang Z, Wang Y, et al. Advanced Energy Materials, 2017, 7, 1700018.
40 Miao L, Wang W, Yuan K, et al. Chemical Communications (Cambridge, England), 2014, 50, 13231.
41 Fang R, Zhao S, Hou P, et al. Advanced Materials, 2016, 28, 3374.
42 Eichhorn S J, Baillie C A, Zaffiropoulos A N, et al. Journal of Materials Science, 2001, 36, 2107.
43 Zhang M, Amin K, Cheng M, et al. Nanoscale, 2018, 10, 21790.
44 Liu B, Zhang J, Wang X, et al. Nano Letters, 2012, 12, 3005.
45 Shen L, Che Q, Li H, et al. Advanced Functional Materials, 2014, 24, 2630.
46 Wang Z, Xua X, Ji S, et al. Journal of Materials Science & Technology, 2020, 55, 56.
47 Miao L, Wang W, Yuan K, et al. Chemical Communications (Cambridge, England),2014, 50, 13231.
48 Milroy C, Manthiram A. Advanced Materials, 2016, 28, 9744.
49 Shen J, Xu X, Liu L, et al. ACS Nano, 2019, 13, 8986.
50 Zhao H, Yan J, Deng N,et al. Journal of Energy Chemistry, 2021, 55, 190.
51 Lin Y, Wen Z, Liu J,et al. Journal of Energy Chemistry, 2021, 55, 129.
52 Zhao H, Wang J, Shao H,et al. Energy & Environmental Materials,2021,5, 327.
53 Sun J, He C, Yao X,et al. Advanced Functional Materials, 2020, 31, 2006381.
54 Qian J, Wang S, Li Y,et al. Advanced Functional Materials, 2020, 31, 2006950.
55 Tikekar M D, Choudhury S, Tu Z, et al. Nature Energy, 2016, 1, 16114.
56 Lin D, Liu Y, Cui Y. Nature Nanotechnology, 2017, 12, 194.
57 Zhang R, Li N W, Cheng X B, et al. Advanced Science, 2017, 4, 1600445.
58 Cheng X B, Hou T Z, Zhang R, et al. Advanced Materials, 2016, 28, 2888.
59 Zhang R, Chen X R, Chen X, et al. Angewandte Chemie International Edition in English, 2017, 56, 7764.
60 Li Z, Li X, Zhou L, et al. Nano Energy, 2018, 49, 179.
61 Pan L, Luo Z, Zhang Y, et al. ACS Applied Materials & Interfaces, 2019, 11, 44383.
62 Song Q, Yan H, Liu K, et al. Advanced Energy Materials, 2018, 8, 1800564.
63 Lin D, Liu Y, Liang Z, et al. Nature Nanotechnology, 2016, 11, 626.
64 Zhao C T, Yu C, Li S F, et al. Small, 2018, 14, 1803310.
65 Park S W, Jin H J, Yun Y S, et al. Advanced Materials, 2020, 32, 2002193.
66 Xie J, Ye J, Pan F, et al. Advanced Materials, 2019, 31, 1805654.
67 Yang G J, Li Y J, Tong Y X, et al. Nano Letters, 2019, 19, 494.
68 Liang Z, Lin D, Zhao J, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2862.
69 Liang Z, Zheng G, Liu C, et al. Nano Letters, 2015, 15, 2910.
70 Zheng G, Lee S W, Liang Z, et al. Nature Nanotechnology, 2014, 9, 618.
71 Hu Z L, Hang S, Dong S M, et al. Chemistry of Materials, 2017, 29, 4682.
72 Liu Y Y, Lin D C, Yuen P Y, et al. Advanced Materials, 2017, 29, 1605531.
73 He Y S, Li M J, Zhang Y G, et al. Advanced Functional Materials, 2020, 30, 2000613.
74 Wang Z S, Shen J D, Liu J, et al. Advanced Materials, 2019, 31, 1902228.
75 Liu J W, Wang J N, Zhu L,et al. Chemical Engineering Journal, 2021, 411, 128540.
76 Wang J, Yi S, Liu J,et al. ACS Nano, 2020, 14(8), 9819.
77 He J, Hartmann G, Lee M,et al. Energy Environmental Science, 2019, 12, 344.
78 Huang X, Tang J, Luo B,et al. Advanced Energy Materials, 2019, 9, 1901872.
79 Tang H, Li W, Pan L,et al. Advanced Functional Materials, 2019, 29, 1901907.
80 Wang J, Yang G, Chen J,et al. Advanced Energy Materials, 2019, 9, 1970147.
81 Fang X, Weng W, Ren J, et al. Advanced Materials, 2016, 28, 491.
82 Mao L J, Meng Q M, Ahmad A, et al. Advanced Energy Materials, 2017, 7, 1700535.
83 GB/T 20170953-T-491,柔性锂离子电池耐弯曲性能测试方法,中华人民共和国国家标准,2019.
[1] 赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
[2] 杜益嘉, 王盼, 肖诚禹, 唐道远, 徐建明, 周涵. 基于外场调控的智能热控超材料[J]. 材料导报, 2022, 36(2): 20110075-6.
[3] 冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻. 高性能锂硫电池研究进展与改进策略[J]. 材料导报, 2022, 36(11): 20080027-14.
[4] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[5] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[6] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[7] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[8] 曹忠亮, 郭登科, 林国军, 胡清明, 富宏亚. 碳纤维复合材料自动铺放关键技术的现状与发展趋势[J]. 材料导报, 2021, 35(21): 21185-21194.
[9] 马衍轩, 李梦瑶, 朱鹏飞, 徐亚茜, 于霞, 彭帅, 张鹏, 张颖锐, 王金华. 超高性能水泥基复合材料的多尺度设计与抗爆炸性能研究进展[J]. 材料导报, 2021, 35(17): 17190-17198.
[10] 魏安柯, 王磊, 王祎. 金属-有机骨架(MOFs)用于锂硫电池硫正极材料改性的研究进展[J]. 材料导报, 2021, 35(13): 13052-13057, 13066.
[11] 张关印, 关清卿, 庙荣荣, 宁平, 何亮. 共价有机骨架材料的合成及应用[J]. 材料导报, 2021, 35(13): 13215-13226.
[12] 张庆, 刘呈坤, 毛雪, 吴月霞, 江志威, 赵丽, 洪洁. 压电纳米发电机材料选用和结构设计研究进展[J]. 材料导报, 2021, 35(11): 11066-11076.
[13] 刘树和, 刘彬, 赵焱, 张兰, 于晓华, 李如燕, 姚耀春, 董鹏. 香蒲活性炭用于锂硫电池正极材料[J]. 材料导报, 2020, 34(8): 8014-8019.
[14] 郭锦, 李占龙, 连晋毅, 闫晓燕, 张敏刚. 改性乙炔黑对锂硫电池电化学性能的影响[J]. 材料导报, 2020, 34(8): 8020-8024.
[15] 杨智为, 周涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21): 21052-21060.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed