Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8014-8019    https://doi.org/10.11896/cldb.18110150
  无机非金属及其复合材料 |
香蒲活性炭用于锂硫电池正极材料
刘树和1, 刘彬2, 赵焱3,4, 张兰3,4, 于晓华3,4, 李如燕3,4, 姚耀春1, 董鹏1
1 昆明理工大学冶金与能源工程学院,昆明 650093;
2 昆明理工大学材料科学与工程学院,昆明 650093;
3 昆明理工大学环境科学与工程学院,昆明 650093;
4 昆明理工大学固体废弃物资源化国家工程研究中心,昆明 650093
Activated Carbon from Cattail Used for the Cathode Material of Lithium-Sulfur Batteries
LIU Shuhe1, LIU Bin2, ZHAO Yan3,4, ZHANG Lan3,4, YU Xiaohua3,4, LI Ruyan3,4, YAO Yaochun1, DONG Peng1
1 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China;
2 Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;
3 Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;
4 National Engineering Research Center of Waste Recovery, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 5068KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 通过香蒲绒的热解和KOH活化制备香蒲活性炭。香蒲活性炭的BET比表面积和孔容积分别为1 913.7 m2/g和0.893 cm3/g,主要为孔径约2 nm的微、介孔。当其用于锂硫电池正极时,碳基质的微介孔可以高度分散和负载非导电性硫,并有效持硫、抑制多硫化物的扩散;同时孔壁可以较快地进行电子输运。因此硫/香蒲活性炭复合材料具有较好的循环性能和倍率容量,0.12C下首次放电容量可达1 150.1 mAh/g,100次循环后比容量为663.3 mAh/g。不同倍率测试表明,复合电极均具有较好的循环稳定性,1C下可逆容量约600 mAh/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘树和
刘彬
赵焱
张兰
于晓华
李如燕
姚耀春
董鹏
关键词:  热解  香蒲  KOH  活性炭  锂硫电池  扩散    
Abstract: Cattail derived activated carbon (CAC) was prepared by pyrolysis of natural cattail wool following with KOH activation. The CAC has a high BET surface area of 1 913.7 m2/g, large pore volume of 0.893 cm3/g and pore size distribution mainly at ~2 nm, which are beneficial to make the non-conductive sulfur being loaded into the pores of the carbon matrix in highly dispersed state,facilitate electrons transports, and restrain the diffusion of polysulfides during the galvanostatic charge/discharge processes using as the cathode matrix for the rechargeable Li-S battery. The S/CAC composite material shows an excellent cycle performance and a good rate capability. At 0.12C current, the first discharge capacity of 1 150.1 mAh/g and 663.3 mAh/g after 100 cycles, can be obtained respectively. Different rates test shows that S/CAC composite has good cycle stability and a stable ~600 mAh/g discharge capacity at 1C rate.
Key words:  pyrolysis    cattail    KOH    activated carbon    lithium sulfur battery    diffusion
               出版日期:  2020-04-25      发布日期:  2020-04-25
ZTFLH:  O646.21  
基金资助: 国家自然科学基金(51264016);昆明理工大学分析测试基金(20152230040)
通讯作者:  2538234121@qq.com   
作者简介:  刘树和,昆明理工大学冶金与能源工程学院,副研究员。2008年5月毕业于中国科学院金属研究所,材料学专业博士学位。同年加入昆明理工大学工作至今,主要从事储能材料的研究,重点研究生物质炭材料和先进碳材料的制备、表征以及在锂离子(锂硫)电池上的应用。在国内外重要期刊发表文章20多篇,授权发明专利7项。
引用本文:    
刘树和, 刘彬, 赵焱, 张兰, 于晓华, 李如燕, 姚耀春, 董鹏. 香蒲活性炭用于锂硫电池正极材料[J]. 材料导报, 2020, 34(8): 8014-8019.
LIU Shuhe, LIU Bin, ZHAO Yan, ZHANG Lan, YU Xiaohua, LI Ruyan, YAO Yaochun, DONG Peng. Activated Carbon from Cattail Used for the Cathode Material of Lithium-Sulfur Batteries. Materials Reports, 2020, 34(8): 8014-8019.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110150  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8014
1 Goodenough J B, Sung P K. Journal of the American Chemical Society, 2013, 135 (4), 1167.
2 Choi N S, Chen Z H, Freunberger S A, et al. Angewandte Chemie International Edition, 2012, 51, 9994.
3 Tarascon J M, Armand M. Nature, 2001, 414, 359.
4 Bruce P G, Scrosati B, Tarascon J M. Angewandte Chemie International Edition, 2008, 47(16), 2930.
5 Etacheri V, Marom R, Elazari R, et al. Energy & EnvironmentalScience, 2011, 4, 3243.
6 Bruce P G, Freunberger S A, Hardwick L J, et al. Nature Materials, 2012, 11(1), 19.
7 Chen L, Shaw L L. Journal of Power Sources, 2014, 267,770.
8 Song J C, Choo M J, Noh H J, et al. ChemSusChem, 2014, 7, 3341.
9 Wang J, Chew S Y, Zhao Z W, et al. Carbon, 2008, 46(2), 229.
10 Mikhaylik Y V, Akridge J R. Journal of the Electrochemical Society, 2004, 151(11), A1969.
11 Bresser D, Passerini S, Scrosati B. Chemical Communications, 2013, 49(90), 10545.
12 Yao Z D, Wei W, Wang J L, et al. Acta Physico-Chimica Sinica, 2011, 27(5), 1005(in Chinese).
姚真东, 魏巍, 王久林, 等.物理化学学报, 2011, 27(5),1005.
13 Diao Y, Xie K, Hong X B, et al. Acta Chimica Sinica, 2013, 71(4), 508(in Chinese).
刁岩,谢凯,洪晓斌,等.化学学报,2013, 71(4), 508.
14 Miao L X, Wang W K, Wang M J, et al. Progress in Chemistry, 2013, 25(11), 1867(in Chinese).
苗力孝,王维坤,王梦佳,等.化学进展, 2013, 25(11),1867.
15 Yang Y, Zheng G Y, Cui Y. Chemical Society Review, 2013, 42(7), 3018.
16 Hu J J, Li G R, Gao X P. Journal of Inorganic Materials, 2013, 28(11), 1181(in Chinese).
胡菁菁,李国然,高学平.无机材料学报,2013, 28(11), 1181.
17 Han F, Lu A H, Li W C. Progress in Chemistry, 2012, 24(12),2443(in Chinese).
韩飞, 陆安慧, 李文翠.化学进展, 2012, 24(12),2443.
18 Cao S B, Xu G B, Wang F M. Journal of Donghua University (Natural Science), 2009, 35(2), 144(in Chinese).
曹胜彬, 徐广标, 王府梅.东华大学学报(自然科学版),2009, 35(2), 144.
19 Oliveira G F, Andrade R C, Trindade M A G, et al. Quimica Nova, 2017, 40(3), 284.
20 Huang G R, Chen J. Carbon Techniques, 2008, 27(5), 41(in Chinese).
黄桂荣,陈建.炭素技术,2008, 27(5), 41.
21 Mao A Q, Wang H, Tan L H, et al. Applied Chemical Industry, 2011, 40(7), 1266(in Chinese).
冒爱琴, 王华, 谈玲华, 等.应用化工,2011, 40(7),1266.
22 Zhang B, Qin X, Li G R, et al. Energy & Environmental Science, 2010, 3, 1531.
23 Yang J,Xie J,Zhou X Y, et al. The Journal of Physical Chemistry C, 2014, 118(4), 1800.
24 Ye H, Yin Y X, Guo Y G. Electrochimica Acta, 2015, 185, 62.
25 Chen F, Ma L L, Ren J G, et al.Materials, 2018, 11(6), 989.
26 Yang K, Gao Q M, Tan Y L, et al. Microporous and Mesoporous Mate-rials, 2015, 204, 235.
27 Miao L X, Wang W K, Yuan K G, et al. Chemical Communications, 2014, 50, 13231.
28 Yin Y X, Xin S, Guo Y G, et al. Angewandte Chemie International Edition, 2013, 52,13186.
29 Yang C P, Yin Y X, Ye H, et al. ACS Applied Materials & Interfaces, 2014, 6, 8789.
30 Hu C, Kirk C, Cai Q, et al. Advanced Energy Materials, 2017, 7, 1701082.
31 Zhang Y G, Zhao Y, Konarov A, et al. Journal of Alloys and Compounds, 2015, 619, 298.
[1] 王铁军, 张龙戈, 车洪艳, 董浩, 郑天明, 周双双, 王学远. Cu中间层对GH4099与Mo-Cu合金HIP扩散焊接头的影响[J]. 材料导报, 2021, 35(2): 2098-2102.
[2] 张墅野, 鲍天宇, 修子扬, 何鹏. 三维封装电迁移Cu互连线的多物理场模拟仿真[J]. 材料导报, 2021, 35(2): 2133-2138.
[3] 张净净, 李海朝. 磷酸活化鱼鳞活性生物炭的制备及表征[J]. 材料导报, 2020, 34(Z1): 116-119.
[4] 刘竹, 杨守禄, 姬宁, 罗扬, 许杰, 吴义强. 油茶果壳高值化利用研究进展[J]. 材料导报, 2020, 34(Z1): 120-127.
[5] 冉德钦, 安斌, 李轶然, 惠冰, 李艳召, 宋光远, 宋海民. 基于多孔介质煤矸石路基汞元素的扩散规律研究[J]. 材料导报, 2020, 34(Z1): 255-257.
[6] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[7] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[8] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[9] 郭锦, 李占龙, 连晋毅, 闫晓燕, 张敏刚. 改性乙炔黑对锂硫电池电化学性能的影响[J]. 材料导报, 2020, 34(8): 8020-8024.
[10] 何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
[11] 尚明刚, 何忠茂, 乔宏霞, 冯琼, 苏富赟, 张璐. 基于恒电流密度的钢筋混凝土加速腐蚀试验研究[J]. 材料导报, 2020, 34(22): 22058-22064.
[12] 孙彩娇, 艾立群, 洪陆阔, 程荣, 周美洁, 侯耀斌. H2/H2O气氛下Fe-C合金气固反应脱碳机理[J]. 材料导报, 2020, 34(20): 20112-20117.
[13] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[14] 郭丽婷, 李晓延, 姚鹏, 李扬. 电场作用下Cu/Cu3Sn界面原子扩散行为的分子动力学模拟[J]. 材料导报, 2020, 34(2): 2137-2141.
[15] 滕英跃, 候星成, 白雪, 刘全生, 李毅, 吴侃, 朱志成. 基于1H-NMR实验数据的三次样条插值函数模型对热解褐煤孔隙演化的研究[J]. 材料导报, 2020, 34(18): 18074-18080.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed