Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2137-2141    https://doi.org/10.11896/cldb.19010083
  金属与金属基复合材料 |
电场作用下Cu/Cu3Sn界面原子扩散行为的分子动力学模拟
郭丽婷, 李晓延, 姚鹏, 李扬
北京工业大学材料科学与工程学院,北京 100124
Molecular Dynamics Simulation of Diffusion Behavior of Atoms at the Interface of Cu/Cu3Sn Under Electric Field
GUO Liting, LI Xiaoyan, YAO Peng, LI Yang
College of Materials Science and Engineering,Beijing University of Technology,Beijing 100124,China
下载:  全 文 ( PDF ) ( 3311KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 电子产品中的钎焊点失效可能会引起整个产品报废,这种情况下电子元器件的回收利用对节约资源意义重大。实现电子元器件的连接界面分离是其有效再利用的前提。旨在为开发可行的连接界面分离技术提供理论参考,本工作运用分子动力学方法模拟研究了电场作用下电场方向和电场强度对Cu/Cu3Sn界面原子扩散行为的影响。结果表明,电场方向对界面原子的扩散行为有显著影响,相同条件下施加正向电场的模型比未加电场的模型更容易发生扩散。进一步研究了正向不同电场强度下界面原子的扩散行为,发现电场强度的增加提高了界面附近Cu3Sn侧原子的本征扩散系数,降低了Cu晶体侧原子的本征扩散系数,从而使得界面原子的扩散速率差异更加显著,产生的柯肯达尔效应更明显,有利于实现Cu/Cu3Sn界面的分离。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭丽婷
李晓延
姚鹏
李扬
关键词:  Cu/Cu3Sn  分子动力学模拟  电场  本征扩散系数    
Abstract: Generally, the failure of solder joint in electronic products may cause the entire product to be scrapped. In this case, the recycling of electronic components is of great significance for saving resources. It is worth pointing out that the effective reuse of electronic components rely on perfect separation of welding interface of them. Aiming at paving the way for developing a feasible interface separation technique theoretically, mole-cular dynamics simulation was carried out to study the effects of electric field direction and strength on the diffusion behavior of atoms at Cu/Cu3Sn interface. It was found that the direction of the electric field played a critical role in affecting the diffusion behavior of the atoms at Cu/Cu3Sn interface. Under the same conditions, the diffusion of atoms were more likely to occur in the models under a positive electric field than that in the one without electric field. Furthermore, study on the diffusion behavior of atoms at Cu/Cu3Sn interface under electric fields of diverse intensities were conducted. As could be seen from the results, the increase of electric field intensities contributed to raising the intrinsic diffusion coefficient of Cu3Sn atoms near the interface, while lowering the intrinsic diffusion coefficient of atoms in Cu crystal, so as to enlarge the difference in diffusion coefficient of interface atoms. Consequently, more obvious Kirkendall effect would be produced, which was beneficial to the separation of Cu/Cu3Sn interface.
Key words:  Cu/Cu3Sn    molecular dynamics simulation    electric field    intrinsic diffusion coefficient
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TG406  
基金资助: 国家自然科学基金(5157011);北京市自然科学基金(2162002)
通讯作者:  xyli@bjut.edu.cn   
作者简介:  郭丽婷,北京工业大学,硕士研究生。主要从事电子封装连接材料及其可靠性评价方面的研究;李晓延,北京工业大学,教授。1992年毕业于哈尔滨工业大学,材料学博士专业学位。1998年起任北京工业大学教授,2000年起任博士研究生导师。主要从事微电子组装材料与技术、材料无损检测与评价、材料工程信息技术等方面的研究工作。在国内外重要期刊发表论文100多篇。
引用本文:    
郭丽婷, 李晓延, 姚鹏, 李扬. 电场作用下Cu/Cu3Sn界面原子扩散行为的分子动力学模拟[J]. 材料导报, 2020, 34(2): 2137-2141.
GUO Liting, LI Xiaoyan, YAO Peng, LI Yang. Molecular Dynamics Simulation of Diffusion Behavior of Atoms at the Interface of Cu/Cu3Sn Under Electric Field. Materials Reports, 2020, 34(2): 2137-2141.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010083  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2137
1 Liang Y, Borgesen P. Journal of Materials Research, 2011, 26(3),455.2 Yang Y, Lu H, Yu C, et al. Transactions of the China Welding Institution, 2013, 34(1), 53 (in Chinese).杨扬, 陆皓, 余春, 等. 焊接学报, 2013, 34(1), 53.3 Wang Y Q, Hu X W, Xu T, et al. Materials Review B: Research Papers, 2018,32(6), 2003(in Chinese).万永强, 胡小武, 徐涛, 等. 材料导报:研究篇, 2018, 32(6), 2003.4 Borgesen P, Pericles K. Microelectronics Reliability, 2011, 51(4),837.5 Jung Y, Yu J. Journal of Applied Physics, 2014, 115(8),083708.6 Bertolino N, Garay J, Anselmi-Tamburini U, et al. Scripta Materialia, 2001, 44(5),737.7 Liu W C, Chen S W, Chen C M. Journal of Electronic Materials, 1998, 27(1),L6.8 Shou W, Yi D, Yi R, et al. Materials & Design, 2016, 98,79.9 Kim J Y, Yu J, Kim S H. Acta Materialia, 2009,57(17), 5001.10 Wang S Y, Li Z R, Zhang Z, et al. Transactions of the China Welding Institution, 2018, 39(1), 13 (in Chinese).王世宇, 李卓然, 张招,等. 焊接学报, 2018, 39(1), 13.11 Zhang W G. Molecular dynamics simulation of electric field effects on surface diffusion and surface oxidation. Ph.D. Thesis, Sun Yat-sen University, China, 2006.张外根. 电场对表面扩散和表面氧化作用的分子动力学模拟. 博士学位论文,中山大学, 2006.12 Chen J S, Xu M J, Jin Y J, et al. Computational Materials Science, 2014, 95,166.13 Cheng H C, Yu C F, Chen W H. Journal of Materials Science, 2012,47(7), 3103.14 Lu M M. Molecular dynamics simulation of solidification characteristics and solid-liquid interface structure of Mg-Al alloy.Master’s Thesis, Nanchang University, China, 2016 (in Chinese).卢敏敏. 镁铝合金凝固特性与固液界面结构的分子动力学研究.硕士学位论文,南昌大学,2016.15 Shang P J, Liu Z Q, Pang X Y, et al. Acta Materialia, 2009, 57(16), 4697.16 Qu L. Study on kinetics and mechanism of Sn/Cu soldering interfacial reaction using real-time imaging technology. Ph.D. Thesis, Dalian University of Technology, China, 2014 (in Chinese).曲林. 实时成像研究Sn/Cu钎焊界面反应动力学及机制. 博士学位论文,大连理工大学, 2014.17 An R, Tian Y, Zhang R, et al. Journal of Materials Science, 2015, 26,2674.
[1] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[2] 李少杰, 闫军, 杜仕国, 鲁彦玲, 蔡军锋. 聚脲弹性体微相分离研究及主要进展[J]. 材料导报, 2020, 34(21): 21205-21210.
[3] 董怀斌,李长青,邹霞辉. 电场诱导碳纳米管在聚合物中定向有序排列的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 427-433.
[4] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[5] 方 炜,王 磊. 碳纳米豆荚内C60分子的振荡行为[J]. 《材料导报》期刊社, 2018, 32(10): 1737-1742.
[6] 张成光,张 勇,张飞虎. 电化学射流加工的电场仿真及实验研究[J]. 《材料导报》期刊社, 2017, 31(24): 191-199.
[7] 方晟,黄雪峰,张彭成,周俊鹏,郭楠. 电场改性水玻璃固化黄土机理研究*[J]. 材料导报编辑部, 2017, 31(22): 135-141.
[8] 王慧华, 徐英君, 蒋坤, 葛彬, 屈天鹏, 王德永. 外电场作用下熔渣对MgO-C耐火材料的侵蚀行为*[J]. 《材料导报》期刊社, 2017, 31(20): 96-100.
[9] 杨明君, 邓彬彬, 马占. 聚酰亚胺玻璃化转变的动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(12): 136-139.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed