Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21205-21210    https://doi.org/10.11896/cldb.19070177
  高分子与聚合物基复合材料 |
聚脲弹性体微相分离研究及主要进展
李少杰1, 闫军2,*, 杜仕国1, 鲁彦玲1, 蔡军锋1
1 陆军工程大学石家庄校区,石家庄 050003;
2 河北交通职业技术学院土木工程系,石家庄 050003
A Review on the Microphase Separation of Polyurea Elastomers
LI Shaojie1, YAN Jun2,*, DU Shiguo1, LU Yanling1, CAI Junfeng1
1 Shijiazhuang Campus, Army Engineering University, Shijiazhuang 050003, China
2 Department of Civil Engineering, Hebei Jiaotong Vocational and Technical College, Shijiazhuang 050003, China
下载:  全 文 ( PDF ) ( 4434KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚脲作为新型的弹性体材料,因其优异的综合性能受到了研究者的广泛关注,近年来在防水、防腐、耐磨、抗爆等领域得到了广泛的应用。随着喷涂施工技术的发展,聚脲也被越来越多地运用到国内大型基础设施建设当中。早期研究多注重于聚脲的使用工艺,而现阶段的研究重点是加强对材料本身微观结构形态的研究,理清结构与相关性能的关系,从而获得性能更优的产品以及开发新型功能化材料。
聚脲由异氰酸酯组分和氨基组分聚合生成,分子链由硬段和软段交替连接。玻璃化转变温度(Tg)较低的软段柔顺性好,形成基体相;具有高Tg、刚性大的硬段在强氢键作用下形成硬相,起到物理交联和作为增强填料的作用,可显著提高材料的理化性能,如热性能、力学性能等。相分离是聚脲典型的微观形态特征,也是其具有优异性能的重要原因。尽管聚脲的微相分离早已研究确认,但其微观组成、形态与相关性能之间的关系尚不明确。
聚脲微相形态的影响因素众多,目前的研究主要集中于:(1)软硬段组成,包括原料结构种类、化学配比、链段长度等;(2)氢键作用,即氢键对形态和性能的影响;(3)制备方法以及加工处理工艺。其中,软硬段组成和氢键作用对聚脲的微观形态和性能有决定性影响。随着科技的进步,各种先进的表征与分析技术逐渐被应用到聚脲的研究当中,尤其是分子动力学模拟技术的发展应用,正成为研究聚脲结构与性能关系的有力工具。
本文主要综述了聚脲微相分离形态方面的研究现状,重点从软硬段组成、氢键作用等微观角度阐述典型结构因素对形态和相关性能的影响,介绍了分子动力学模拟技术在聚脲研究中的应用现状,并指出了现阶段研究的不足和未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李少杰
闫军
杜仕国
鲁彦玲
蔡军锋
关键词:  聚脲弹性体  微相分离  氢键化程度  分子动力学模拟    
Abstract: Polyurea,a kind of emerging elastomer, has received enormous attention from researchers in view of its excellent comprehensive perfor-mance. In recent years, it has been widely employed in the fields of water-proof, anti-corrosion, wear-resisting and blast-mitigation. Since its commercialization, polyurea has been increasingly used in the construction of large-scale infrastructure in China with the development of spraying technology. With the most previous studies paying attention to the spraying technology of polyurea, the research at the present stage should focus on strengthening studies of the microstructure and morphology of material itself and clarifying the relationship between the structure and related properties, in order to obtain better products and develop new functional materials.
Polyurea, formed by the reaction of isocyanate and amine, are composed of soft segments and hard segments arranged alternately. The soft segments possess excellent flexibility with low glass transition temperature (Tg), forming matrix phase. The hard segments, with high Tg and large rigidity, tend to self-assemble into hard domains under the action of strong hydrogen bond, and operate as both physical crosslinks and as reinforcing fillers, enhancing the properties of the material such as thermal performance, mechanical performance significantly. Phase-separation is a typical morphological feature of polyurea, resulting in its excellent performance. Although the microphase separation of polyurea has been confirmed early, the relationship between its micro composition, morphology and related properties is not clear.
With many factors affecting the morphology of polyurea, the research at present mainly focuses on: (ⅰ) soft and hard segments chemistry, including structural types, stoichiometric ratio and segments length, etc. (ⅱ) hydrogen bond behavior, referring to the effects of hydrogen bond on morphology and properties, (ⅲ) preparation methods and processing conditions. Among them, soft and hard segments chemistry and hydrogen bond behavior play a decisive role in the microphase and properties of polyurea. With the development of science and technology, various advanced cha-racterization and analysis techniques have been gradually applied to the study of polyurea, especially the development and application of molecular dynamics simulation technology, which is becoming a powerful tool to study the relationship between the structure and properties of polyurea.
In this paper, the microphase separation morphology of polyurea is mainly reviewed, and effects of representative structural factors on morpho-logy and related properties are presented from the perspective of soft and hard segments chemistry and hydrogen bond behavior with special attention. The application status of molecular dynamics simulation technology in polyurea research is introduced, while drawbacks of recent researches and the future direction are also presented.
Key words:  polyurea elastomers    microphase separation    degree of hydrogen bonding    molecular dynamics simulation
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  O631.1  
  TB324  
基金资助: 国家自然科学基金(51272284)
作者简介:  李少杰,2018年6月毕业于河南理工大学,获得理学学士学位。现为陆军工程大学弹药工程系硕士研究生,在杜仕国教授和闫军教授的指导下进行研究。目前主要研究领域为聚合物基复合材料。
闫军,河北交通职业技术学院副教授。1994年毕业于山西大学获有机化学学士学位,1997年毕业于山西大学分子科学研究所获无机化学硕士学位,2008年毕业于军械工程学院,获兵器科学技术专业博士学位。1997年至2017年在军械工程学院工作。主要从事高分子复合材料、微胶囊技术、功能涂料技术等领域的研究。发表论文80 余篇,其中SCI、EI收录50余篇。
引用本文:    
李少杰, 闫军, 杜仕国, 鲁彦玲, 蔡军锋. 聚脲弹性体微相分离研究及主要进展[J]. 材料导报, 2020, 34(21): 21205-21210.
LI Shaojie, YAN Jun, DU Shiguo, LU Yanling, CAI Junfeng. A Review on the Microphase Separation of Polyurea Elastomers. Materials Reports, 2020, 34(21): 21205-21210.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070177  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21205
[1] Huang W B, Yang Y R, Wang B Z, ea al. Materials Reports, 2000, 14(12), 33(in Chinese).
黄微波, 杨宇润, 王宝柱, 等.材料导报, 2000, 14(12), 33.
[2] Zhao Q G, Yu M L, Jiang Y G.China Elastomerics, 2018, 28(6), 80(in Chinese).
赵庆贵, 于明磊, 姜言刚.弹性体, 2018, 28(6), 80.
[3] Iqbal N, Tripathi M, Parthasarthy S, et al.RSC Advances, 2016, 6(111), 109707.
[4] He J W, Huang S L, Qing N. Materials Reports B: Research Papers, 2014, 28(12), 292(in Chinese).
何金文, 黄顺礼, 卿宁.材料导报: 研究篇, 2014, 28(12), 292.
[5] Huang W B, Song Y L, Ma M L. Engineering Plastics Application, 2019, 47(1), 148(in Chinese).
黄微波, 宋奕龙, 马明亮.工程塑料应用, 2019, 47(1), 148.
[6] Yilgr I, Yilgr E, Wilkes G L.Polymer, 2015, 58(10), 36.
[7] Yilgor I, Yilgor E. Polymer Reviews, 2007, 47(4), 487.
[8] Zhou C F. Chemical Industry Times, 2012, 26(12), 22(in Chinese).
周成飞. 化工时刊, 2012, 26(12), 22.
[9] Iqbal N, Sharma P K, Kumar D, et al.Construction and Building Mate-rials, 2018, 175(5), 682.
[10] Bonart R.Journal of Macromolecular Science, 2006, 2(1), 119.
[11] Holzworth K, Jia Z, Amirkhizi A V, et al.Polymer, 2013, 54(12), 3080.
[12] Cooper S L, Tobolsky A V.Journal of Applied Polymer Science, 2010, 10(12), 1839.
[13] He Y, Xie D, Zhang X.Journal of Materials Science, 2014, 49(21), 7340.
[14] Kojio K, Nakashima S, Furukawa M.Polymer, 2007, 48(4), 997.
[15] Li T, Zheng T, Han J, et al. Polymers (Basel), 2019, 11(5), 18.
[16] Iqbal N, Tripathi M, Parthasarathy S, et al.Journal of Applied Polymer Science, 2018, 135(21), 1.
[17] Roland C M, Twigg J N, Vu Y, et al.Polymer, 2007, 48(2), 577.
[18] Yang J, Wang G Y, Hu C P. Acta Polymerica Sinica, 2003, 1(6), 798(in Chinese).
杨娟,王贵友,胡春圃. 高分子学报, 2003, 1(6), 798.
[19] Garrett J, Runt J, Lin J J M. Macromolecules, 2000, 33(17), 6359.
[20] Sheth J P, Klinedinst D B, Wilkes G L, et al.Polymer, 2005, 46(18), 7320.
[21] Pang B. Synthesis and properties of organosilicon-modified polyurea elastomers. Master's Thesis, Shandong University, China, 2018(in Chinese).
庞博. 有机硅改性聚脲弹性体的合成及性能研究. 硕士学位论文, 山东大学, 2018.
[22] Sheth J, Erenturk B.Polymer, 2005, 46(19), 8193.
[23] Yildirim E, Yurtsever M. Computational Theoretical Chemistry, 2014, 1035(9), 38.
[24] Hernandez R, Weksler J.Macromolecules, 2008, 41(24), 9767.
[25] Velankar S, Cooper S L. Macromolecules, 2000, 33(2), 384.
[26] Castagna A, Choi T.Macromolecules, 2012, 45(20), 8444.
[27] Klinedinst D B, Yilgr I, Yilgr E, et al.Polymer, 2012, 53(23), 5366.
[28] Saralegi A, Rueda L, Fernández-D'Arlas B, et al. Polymer International, 2013, 62(1), 110.
[29] Ertem Piril S, Yilgor E, Kosak C, et al.Polymer, 2012, 53(21), 4620.
[30] Zhang S J. Study on the intermolecular H-bond interactions in segmented polyurethane-ureas. Master's Thesis, Zhengzhou University, China, 2006(in Chinese).
张世杰. 胺扩链聚氨酯的氢键相互作用研究. 硕士学位论文,郑州大学, 2006.
[31] Iqbal N, Tripathi M, Parthasarathy S, et al. Chemistry Select, 2018, 3(7), 1982.
[32] He Y. The role of diisocyanate structure on the synthesis and microphase-separated morphology of polyurethane. Ph.D. Thesis, South China University of Technology, China, 2013(in Chinese).
何勇. 异氰酸酯单体的结构对聚氨酯的制备和微相分离形态的影响.博士学位论文,华南理工大学, 2013.
[33] Zhou Q, Cao L, Li Q, et al.Journal of Applied Polymer Science, 2012, 125(5), 3701.
[34] Lv P, Chen G H, Huang W B. Modern Chemical Industry, 2006, 26(9), 31(in Chinese).
吕平, 陈国华, 黄微波. 现代化工, 2006, 26(9), 31.
[35] Yao K L. In: 2018 National Conference on Solid Mechanics. Harbin, 2018, pp. 64(in Chinese).
姚凯丽. 2018 全国固体力学学术会议. 哈尔滨, 2018, pp. 64.
[36] Yao K L, Liu Z L, Zhuang Z. In: The 25th Annual Academic Meeting of Beijing Society of Theroretical and Applied Mechanics. Beijing, 2019, pp.200(in Chinese).
姚凯丽, 柳占立, 庄茁. 北京力学会第二十五届学术年会. 北京, 2019, pp.200.
[37] Gorfain J, Key C, Veysset D, et al. In: AIP Conference Proceedings. New York, 2018, pp. 090005.
38 Liu M, Oswald J.Polymer, 2019, 176(16), 10.
[39] Agrawal V, Holzworth K, Nantasetphong W, et al. Journal of Polymer Science Part B: Polymer Physics, 2016, 54(8), 810.
[40] Zhang M, Cui Z, Catherine Brinson L. Journal of Polymer Science Part B: Polymer Physics, 2018, 56(23), 1566.
[41] Wang L Y, Ye M X, Wang S, et al. Thermosetting Resin, 2018, 16(3), 42(in Chinese).
王镠旸, 叶梦醒, 王姗, 等. 热固性树脂, 2018, 16(3), 42.
[42] Wang Y, Song H J, Xie S X. Materials Reports, 2015, 29(6), 11(in Chinese).
王勇, 宋慧娟, 谢绍祥.材料导报, 2015, 29(6), 11.
[43] Yu T, Ma X Y, She X F. New Chemical Materials, 2014, 42(2), 56(in Chinese).
余韬, 马晓燕, 佘希锋. 化工新型材料, 2014, 42(2), 56.
[44] Qian X, Song L, Tai Q, et al. Composites Science & Technology, 2013, 74(74), 234.
[45] Gooneie A, Schuschnigg S, Holzer C. Polymers, 2017, 9(1), 16.
[1] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[2] 郭丽婷, 李晓延, 姚鹏, 李扬. 电场作用下Cu/Cu3Sn界面原子扩散行为的分子动力学模拟[J]. 材料导报, 2020, 34(2): 2137-2141.
[3] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[4] 方 炜,王 磊. 碳纳米豆荚内C60分子的振荡行为[J]. 《材料导报》期刊社, 2018, 32(10): 1737-1742.
[5] 杨明君, 邓彬彬, 马占. 聚酰亚胺玻璃化转变的动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(12): 136-139.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed