Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4056-4061    https://doi.org/10.11896/cldb.19030097
  无机非金属及其复合材料 |
地聚合物凝胶结构建模及分子动力学模拟
王晴, 康升荣, 吴丽梅, 张强, 丁兆洋
沈阳建筑大学材料科学与工程学院,沈阳 110168
Structural Modeling and Molecular Dynamics Simulation of Geopolymers Gel
WANG Qing, KANG Shengrong, WU Limei, ZHANG Qiang, DING Zhaoyang
School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
下载:  全 文 ( PDF ) ( 4922KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 地聚合物胶凝材料是一类以多种非晶质至半晶质相的三维铝硅酸盐空间网络结构为主的新型无机非金属材料。本工作使用溶胶-凝胶法制备了不同CaO含量的地聚合物凝胶,通过X射线衍射表征了地聚合物凝胶的结构;基于蒙特卡罗方法,使用Materials Studio软件构建地聚合物N-A-S-H凝胶、C-A-S-H凝胶和不同Ca含量的地聚合物凝胶的结构模型,在Universal力场下对凝胶结构进行优化和分子动力学模拟,计算了各结构模型的径向分布函数、结构参数,模拟了弹性模量和凝胶结构的X射线衍射谱。研究结果表明:根据Ca含量的不同地聚合物凝胶可以分为无钙体系、低钙体系、中钙体系和高钙体系,无钙体系主要是N-A-S-H凝胶,低、中钙体系以N-A-S-H和C-A-S-H混合凝胶为主,高钙体系只含有C-A-S-H凝胶相和Ca(OH)2相,低钙体系CaO含量小于16.7%,高钙体系CaO含量大于30%;在Universal力场下,N-A-S-H凝胶和C-A-S-H凝胶的弹性模量分别为22.04 GPa和62.37 GPa,含钙体系地聚合物凝胶的弹性模量随Ca含量的增加而增大;地聚合物凝胶结构模型的径向分布函数表明,其分子结构为典型的无定型结构,且主要化学键的平均键长与实验值吻合较好,含钙体系地聚合物凝胶结构模型中Si-O键、Al-O键和O-O键径向分布函数出现了峰的分裂现象,Ca的加入使Si-O键、Al-O键和O-O键类型变得复杂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晴
康升荣
吴丽梅
张强
丁兆洋
关键词:  地聚合物凝胶  分子结构建模  Ca含量  分子动力学模拟    
Abstract: Geopolymer gel is a new type of inorganic cementitious material that mainly composed by three-dimensional aluminosilicate spatial network structure with a variety of amorphous to semi-crystalline phases. In this work, the pure geopolymer gel with different Ca content were prepared by sol-gel method, and their structures were characterized by X-ray diffraction. Different structures of N-A-S-H and C-A-S-H geopolymer gel, based on Monte Carlo method, were build and optimized under the Universal force field of Materials Studio (MS) , and its radial distribution function and structure parameters were worked out. The elastic modulus and X-ray diffraction pattern of different type of geopolymer gel were si-mulated. The results show that geopolymer gel can be divided into 4 systems by the content of calcium, named no calcium system, low calcium system, middle calcium system and high calcium system. The main structure of the 4 systems were different: N-A-S-H gel to no calcium system, N-A-S-H and C-A-S-H gel to low calcium and middle calcium system, C-A-S-H gel and Ca(OH)2 to high calcium system. The CaO of the low calcium system was less than 16.7%, and that in the high calcium system was more than 30%. Under the Universal force field, the elastic modulus of geopolymer increased by the content of Ca, and that of pure N-A-S-H gel and C-A-S-H gel were 22.04 GPa and 62.37 GPa, respectively. Through the radial distribution function distribution, the molecular structure of geoplymer gel was typically amorphous, and its average chemical bond length matched well with experiment values. The peaks of the radial distribution function of Si-O, Al-O and O-O bonds were divided in some way, and the chemical type of Si-O, Al-O and O-O bonds became more complicated with the increase of Ca.
Key words:  geopolymer gel    molecular structure modeling    calcium content    molecular dynamics simulation
               出版日期:  2020-02-25      发布日期:  2020-01-15
基金资助: “十三五”国家重点研发计划项目(2016YFC0700807-02)
通讯作者:  smallnew69@126.com   
作者简介:  王晴,教授,长期从事新型胶凝材料、水泥混凝土化学、固体废弃物的资源化利用、高性能混凝土等方面的研究;丁兆洋,沈阳建筑大学博士研究生,主要从事化学激发胶凝材料的研究。
引用本文:    
王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
WANG Qing, KANG Shengrong, WU Limei, ZHANG Qiang, DING Zhaoyang. Structural Modeling and Molecular Dynamics Simulation of Geopolymers Gel. Materials Reports, 2020, 34(4): 4056-4061.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030097  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4056
1 Davidovits J. Journal of Thermal Analysis and Calorimetry,1991,37,1633.
2 Davidovits J.US patent, US4472199,1984.
3 Behzad Majidi.Materials Technology,2009,24(2),79.
4 Davidovits J.In: Geopolymer 2002 Conference. Melbourne, 2002,pp.1.
5 Hua Xu, Van Deventer.Cement and Concrete Research, 2002(35),1705.
6 Allen M P, Tildesley D J.Computer Simulation of Liquids,1989,42(3),105.
7 Bonaccorsi E ,Merlino S,Taylor H F W.Cement and Concrete Research,2003,34(9),1481.
8 Mutisya S M,Miranda C R. Applied Surface Science,2018,444,287.
9 Mauricio Garza-Castanon, Carlos Vela, Karla Serrano,et al. MRS Online Proceedings Library Archive,2016, 1813, 1577.
10 Yoon S.Monteiro P J M. Journal of Advanced Concrete Technology,2013,11(6),180.
11 Wang Q, Liu L, Wu C P, et al. Journal of Shenyang Jianzhu University (Natural Science), 2007(1), 73(in Chinese).
王晴,刘磊,吴昌鹏,等.沈阳建筑大学学报(自然科学版), 2007(1),73.
12 Lowenstein W. American Mineralogist,1954,39,92.
13 Fernández-Jiménez A, Puertas F, Sobrados I,et al. Journal of the American Ceramic Society,2003,86( 8),1389.
14 Zhang Y S, Sun W, Lin Z J, et al.Journal of Southeast University (Natural Science Edition),2008(3),153(in Chinese).
张云升,孙伟,李宗津,等.硅酸盐学报(自然科学版),2008(3),153.
15 Shi H S,Guo X L,Xia M, et al.Functional Materials.2015,46(4),4081(in Chinese).
施惠生,郭晓潞,夏明,等.功能材料,2015, 46(4),4081.
16 Zhou C S.Computational investigations of the microstructures and mecha-nical properties of calcium-silicate-hydrate.Ph.D. Thesis,Wuhan University, China,2012(in Chinese).
周崇松.水化硅酸钙分子结构与力学性能的理论研究.博士学位论文,武汉大学,2012.
17 Li K.Molecular simulation study on the structural characteristics of C-S-H gels.Ph.D. Thesis, Wuhan University of Technology, China,2012(in Chinese).
李凯.C-S-H凝胶结构特性的分子模拟研究.博士学位论文,武汉理工大学,2012.
18 Fernández-Jiménez A,Puertas F,Sobrados I,et al.Journal of the American Ceramic Society,2003,86(8),1389.
19 Hamid S A. Zeitschrift Fur Kristallographie,1981,154,189.
20 Puertas F, Palacios M, Manzano H, et al.Journal of the European Ceramic Society,2011,31,2043.
21 White C E, Provis J L, Llobet A, et al. Journal of the American Ceramic Society,2011,94(10),3532.
22 Merlino S, Bonaccoris E, Armbruster T. American Mineralogist,1999,84,1613.
23 Smith J V,Bailey S W.Acta Crystallographica,1963,16,801.
24 Smilauer V, Hlavácek P, Skvára F, et al. Journal of Materials Science,2011,46(20),6545.
25 Pellenq R J M, Kushima A, Shahsavari R, et al. Proceedings of the National Academy of Sciences of the United States of America,2009,106,16102.
[1] 李少杰, 闫军, 杜仕国, 鲁彦玲, 蔡军锋. 聚脲弹性体微相分离研究及主要进展[J]. 材料导报, 2020, 34(21): 21205-21210.
[2] 郭丽婷, 李晓延, 姚鹏, 李扬. 电场作用下Cu/Cu3Sn界面原子扩散行为的分子动力学模拟[J]. 材料导报, 2020, 34(2): 2137-2141.
[3] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[4] 方 炜,王 磊. 碳纳米豆荚内C60分子的振荡行为[J]. 《材料导报》期刊社, 2018, 32(10): 1737-1742.
[5] 杨明君, 邓彬彬, 马占. 聚酰亚胺玻璃化转变的动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(12): 136-139.
[6] 敖晓辉,邢书明,于佰水,张佳虹,郭强,王如芬. 铸造铝硅合金熔炼过程中Ca含量的变化规律*[J]. 材料导报编辑部, 2017, 31(10): 92-95.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed