Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2131-2136    https://doi.org/10.11896/cldb.19100020
  金属与金属基复合材料 |
X80油气管道焊缝双裂纹干涉效应多场耦合数值模拟方法
崔巍1,2, 宋日悬1, 肖忠民2, 冯子明1, 冷德成3, 董康兴1, 张强1, 杨志军1
1 东北石油大学机械科学与工程学院,大庆 163318
2 南洋理工大学机械与宇航工程学院,新加坡 639798
3 大庆石化公司化肥厂,大庆 163714
Multi-field Coupling Numerical Simulation Method for Interference Effect of Double Cracks in X80 Oil and Gas Pipeline Weld
CUI Wei1,2, SONG Rixuan1, XIAO Zhongmin2, FENG Ziming1, LENG Decheng3, DONG Kangxing1, ZHANG Qiang1, YANG Zhijun1
1 School of Mechanical Science and Engineering,Northeast Petroleum University,Daqing 163318,China
2 School of Mechanical and Aerospace Engineering,Nanyang Technological University,Singapore 639798
3 Fertilizer Plant,Daqing Petrochemical Company,Daqing 163714,China
下载:  全 文 ( PDF ) ( 7952KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于漏磁法检测管道焊缝理论,应用虚拟裂纹闭合法(Virtual crack closure technique,VCCT)提出一种流固磁多场耦合方法。以解决工程问题为例,由于实际管道中裂纹多以裂纹群的形式存在,因而应用该方法研究了X80管道焊缝共线双裂纹、环向对称双裂纹扩展问题。通过对管道焊缝内壁动态施加流体压力载荷,每完成一次裂纹增量扩展,重构网格,计算裂纹扩展进程中的特征量,包括管道内流体压力载荷P、裂纹尖端能量释放率G、扩展长度L、裂纹尖端张开角度CTOA、磁感应强度分量峰值Bxp,循环进行裂纹扩展和磁场分析。数值算例结果表明:共线双裂纹的干涉效应加速了裂纹扩展进程;环向对称双裂纹间距较大时,加速了裂纹扩展进程,当环向间距小于或等于0.5倍的焊缝环向弧长的双裂纹时,由于双裂纹干涉效应,双裂纹的存在抑制了裂纹的扩展。该方法的实现可为指导实际X80管道安全评估提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔巍
宋日悬
肖忠民
冯子明
冷德成
董康兴
张强
杨志军
关键词:  X80油气管道焊缝  裂纹扩展  流固磁多场耦合  VCCT  共线双裂纹  环向对称双裂纹    
Abstract: Based on the theory of magnetic flux leakage (MFL) method for detecting pipeline weld, a fluid-solid magnetic multi-field coupling method is proposed by applying the virtual crack closure technique (VCCT). Taking solving engineering problems as an example, because the cracks in actual pipelines mostly exist in the form of crack groups, this method is applied to study the crack propagation problems of co-linear double cracks and circumferentially symmetric double cracks of X80 pipeline weld. By dynamically applying fluid pressure load on the inner wall of pipeline weld, each time the crack incremental growth is completed, the mesh is reconstructed, and the characteristic parameters in the process of crack propagation, such as fluid pressure load P in pipeline, energy release rate G at crack tip, propagation length L, crack-tip-opening angle CTOA, magnetic induction component Bxp, are calculated. Crack propagation and magnetic field analysis are carried out cyclically. The numerical results show that the interference effect of collinear double cracks accelerate the process of crack propagation, and the process of crack propagation is accelerated when the distance between circular symmetric double cracks is large. When the annular distance is less than or equal to 0.5 times of the annular arc length of the weld, the existence of the double crack inhibits the growth of the crack due to the interference effect of the double crack. The realization of this method can provide theoretical basis for practical X80 pipeline safety evaluation.
Key words:  X80 oil and gas pipeline weld    crack propagation    fluid-solid-magnetic multi-field coupling    VCCT    collinear double crack    circular symmetric double crack
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51607035;11502051;51774091);黑龙江省普通本科高等学校青年创新人才(UNPYSCT-2018046);中国博士后科学基金(2018M641804;2018T110268);黑龙江省博士后科研启动金(LBH-Q18029);国家留学基金;黑龙江省自然科学基金(LH2019E018);中国石油和化学工业联合会科技指导计划(2017-11-04);东北石油大学科研启动金(rc201732);大庆市指导性科技计划项目(zd-2019-20)
通讯作者:  cuiweivv@126.com;mzxiao@ntu.edu.sg   
作者简介:  崔巍,副教授,2013年6月毕业于东北石油大学,获得工学博士学位。主要从事铁磁性功能材料损伤、油气管线管柱完整性评价等方面的研究,主持国家自然科学基金、中国博士后基金等多项课题,在国内外学术期刊发表文章20余篇,申请发明专利10余项。
引用本文:    
崔巍, 宋日悬, 肖忠民, 冯子明, 冷德成, 董康兴, 张强, 杨志军. X80油气管道焊缝双裂纹干涉效应多场耦合数值模拟方法[J]. 材料导报, 2020, 34(2): 2131-2136.
CUI Wei, SONG Rixuan, XIAO Zhongmin, FENG Ziming, LENG Decheng, DONG Kangxing, ZHANG Qiang, YANG Zhijun. Multi-field Coupling Numerical Simulation Method for Interference Effect of Double Cracks in X80 Oil and Gas Pipeline Weld. Materials Reports, 2020, 34(2): 2131-2136.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100020  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2131
1 Sun Z L, Chai X D, Liu X X,et al. Material Reports B:Research Papers, 2017, 31(4), 130 (in Chinese).孙志礼, 柴小冬, 柳溪溪, 等. 材料导报:研究篇, 2017, 31(4), 130.2 Xiao Z M, Yan J, Chen B J. Acta Mechanica, 2004, 171(1-2), 29.3 Li L, Yang Y H, Xu Z, et al. Fatigue & Fracture of Engineering Mate-rials & Structures, 2015, 37(10), 1124.4 Sheng Y, Zhu X L, Zeng X G,et al. Material Reports B:Research Papers, 2019, 33(7), 2419 (in Chinese).盛鹰, 朱星亮, 曾祥国, 等. 材料导报:研究篇, 2019, 33(7), 2419.5 Kumar S, Singh I V, Mishra B K. Computers & Structures, 2015, 150, 1.6 Bouhala L, Shao Q, Koutsawa Y, et al. Engineering Fracture Mechanics, 2013, 102(4), 51.7 Zheng H, Xu D D. International Journal for Numerical Methods in Engineering, 2014, 97(13), 986.8 Zhang H H, Li L X, An X M. Engineering Analysis with Boundary Elements, 2010, 34(1), 41.9 Ma G W, An X M, Zhang H H, et al. International Journal of Fracture, 2009, 156(1), 21.10 Farkash E, Banks-Sills L. International Journal of Fracture, 2017, 205(2), 189.11 Shokrieh M M, Rajabpour-Shirazi H, Heidari-Rarani, et al. Computational Materials Science, 2012, 65(12), 66.12 Xie D, Biggers S B. Finite Elements in Analysis and Design, 2006, 42(11), 977.13 Krueger R. Applied Mechanics Reviews, 2004, 57(1), 109.14 Cui W, Zhang Y H, Zhang Q, et al. Material Reports B:Research Papers, 2019, 33(3), 1036. (in Chinese).崔巍, 张煜杭, 张强, 等. 材料导报:研究篇, 2019, 33(3), 1036.
[1] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[2] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[3] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[4] 郭萍, 赵永庆, 洪权, 毛小南, 侯红苗, 潘浩. TC4-DT钛合金疲劳裂纹扩展的微观机制[J]. 材料导报, 2019, 33(20): 3448-3451.
[5] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[6] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[7] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[8] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[9] 温飞娟, 董丽虹, 王海斗, 吕振林, 底月兰. 热喷涂零件界面裂纹扩展行为影响因素研究[J]. 材料导报, 2018, 32(16): 2793-2797.
[10] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[11] 崔巍, 王珂, 姜民政, 马春阳, 冯子明, 冷建成. 管道焊缝裂纹扩展的流固磁耦合表征[J]. 材料导报, 2018, 32(16): 2852-2858.
[12] 李革, 徐泽华, 牛建刚. 塑钢纤维轻骨料混凝土细观破坏过程的数值模拟[J]. 《材料导报》期刊社, 2018, 32(14): 2412-2417.
[13] 底月兰, 王海斗, 董丽虹, 邢志国, 王晓丽. 扩展有限元法在裂纹扩展问题中的应用*[J]. 《材料导报》期刊社, 2017, 31(3): 70-74.
[14] 冷建成,田洪旭,周国强,吴泽民. 基于磁记忆方法的抽油杆裂纹扩展监测[J]. 《材料导报》期刊社, 2017, 31(24): 178-190.
[15] 方瑞杰,刘军,陈建恩,王肖锋. 多耦合拘束效应对P92钢蠕变裂纹扩展行为的影响*[J]. 材料导报编辑部, 2017, 31(22): 153-158.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[4] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[5] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[6] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[7] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[8] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[9] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[10] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed