Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2123-2130    https://doi.org/10.11896/cldb.18120135
  金属与金属基复合材料 |
X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测
高旭东1, 邵永波1, 谢丽媛1, 杨冬平2
1 西南石油大学机电工程学院,成都 610500
2 中石化胜利油田分公司技术检测中心,东营 257062
Prediction of Fatigue Crack Propagation of X56 Steel Submarine Pipelines in Corrosive Environment
GAO Xudong1, SHAO Yongbo1, XIE Liyuan1, YANG Dongping2
1 School of Mechatronic Engineering,Southwest Petroleum University,Chengdu 610500,China
2 Technology Inspection Center,China Petroleum & Chemical Corporation,Dongying 257062,China
下载:  全 文 ( PDF ) ( 2175KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 海底管道浸没在海洋环境中,腐蚀疲劳破坏十分常见,因此为这些管道的剩余疲劳寿命提供一种准确的预测方法至关重要。本工作研究了海浪循环荷载下含裂纹管道的疲劳裂纹扩展行为,提出了一种新的管道寿命预测方法。使用新提出的形状因子处理试验数据获得X56钢的Paris常数,并分析了其在腐蚀环境下的疲劳性能。运用有限元软件模拟管道疲劳裂纹的扩展过程并计算其应力强度因子(ΔK),随后基于Paris公式对管道的剩余寿命进行预测。结果表明,对于给定的ΔK,海水中管道的疲劳裂纹扩展速率(da/dN)为空气中的1.6倍,且随着疲劳裂纹扩展速率的增加,海水对管道腐蚀疲劳的影响逐渐降低。运用新提出的方法预测管道剩余寿命并与足尺寸X56管道疲劳试验结果进行对比,结果表明该方法能够有效地预测管道的疲劳裂纹扩展状态和剩余疲劳寿命。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高旭东
邵永波
谢丽媛
杨冬平
关键词:  海底管道  Paris公式  X56钢  疲劳裂纹扩展  剩余疲劳寿命    
Abstract: Corrosive fatigue failure is universally existed in the submarine pipeline because of the immersion of pipeline in marine environment. An accurate method is critical for predicting the residual life of these pipelines. We studied the fatigue crack propagation behavior of the cracked pipeline under cyclic load of ocean waves, and proposed a novel approach for predicting the fatigue life of submarine pipeline. Then, we acquired the Paris law constants of X56 steel by employing the newly proposed shape factor to analyze the test data, and analyze the fatigue crack propagation behavior of the X56 steel under corrosive environment. Furthermore, we utilized the finite element software to simulate the fatigue crack propagation process and calculate the stress intensity factor (ΔK), and we conducted the residual life prediction of the X56 pipeline according to the Paris law. As could be seen from the results, for a given ΔK, the X56 steel pipeline showed a 1.6 times fatigue crack growth rates (da/dN) in seawater of that in air. Additionally, the influence of seawater on corrosive fatigue weakened gradually as the increasing fatigue crack growth rate. The results of residual life prediction of X56 steel pipeline conducted by the new approach was taken in comparison with the experimental results of a full-scale pipeline specimen, indicating the validity of the proposed approach in predicting the fatigue crack propagation state and the residual fatigue life of pipelines.
Key words:  submarine pipelines    Paris law    X56 steel materials    fatigue crack propagation    residual fatigue life
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TG172.5  
基金资助: 国家重点研发计划(2016YFC0802305)
通讯作者:  ybshao@swpu.edu.cn   
作者简介:  高旭东,硕士研究生。2016年毕业于辽宁石油化工大学,获得学士学位。2017年9月至今在西南石油大学机电工程学院攻读硕士学位;邵永波,教授,博士研究生导师。于清华大学工程力学系获本科和硕士学位;2005年于新加坡南洋理工大学土木工程专业博士毕业,获得博士学位。2015年获聘四川省千人计划特聘专家,2017年获得四川省有突出贡献的优秀专家称号。一直从事结构工程、海洋工程钢结构和机械强度理论方面的教学科研工作,专注于钢结构疲劳断裂、抗震、抗火、抗冲击性能及结构安全评估和维修加固方面的研究。发表科技论文130余篇,其中SCI收录52篇,论文他引600余次。荣获四川省科技进步三等奖1项、山东省自然科学三等奖1项、中国石油化工和自动化行业科技进步二等奖1项、中国海洋工程科学技术二等奖2项,国际会议最佳论文奖2次。作为大会主席组织召开国际会议2次,先后8次受邀在国际会议上作特邀报告(Keynote speech)。
引用本文:    
高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
GAO Xudong, SHAO Yongbo, XIE Liyuan, YANG Dongping. Prediction of Fatigue Crack Propagation of X56 Steel Submarine Pipelines in Corrosive Environment. Materials Reports, 2020, 34(2): 2123-2130.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120135  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2123
1 Fang N, Chen G M, Zhu H W, et al. Oil & Gas Storage and Transportation, 2014, 33(1), 99(in Chinese).方娜, 陈国明, 朱红卫, 等. 油气储运, 2014, 33(1), 99.2 Liang H, Li H C, Hao X G, et al. Oil & Gas Storage and Transportation, 2015, 34(4), 439(in Chinese).梁浩, 李海川, 郝兴国, 等. 油气储运, 2015, 34(4),439.3 Aljaroudi A, Khan F, Akinturk A, et al. Journal of Loss Prevention in the Process Industries, 2015, 37, 101.4 Cui M W, Cao X W, Feng Z Y. Journal of Ship Mechanic, 2014(1-2), 124(in Chinese).崔铭伟, 曹学文, 封子艳. 船舶力学, 2014(1-2), 124.5 Yu J X, Fu M Y. Journal of Ship Mechanic, 2011 15(1),151(in Chinese).余建星, 傅明炀. 船舶力学, 2011, 15(1),151.6 Liu Y, Yi H, Chen L. Marine Structures, 2014, 36(2),51.7 Tian Y, Zhang Z, Zhang H W. Computer Aided Engineering, 2015, 24(5), 53(in Chinese).田宇, 张昭, 张洪武. 计算机辅助工程, 2015,24(5), 53.8 Lam K Y, Zong Z, Wang Q X. Journal of Offshore Mechanics & Arctic Engineering, 2001, 123(3),134.9 Lyu H B, Yao W X. Advances in Mechanics, 2001, 30(4), 538(in Chinese).吕海波, 姚卫星. 力学进展, 2000, 30(4), 538.10 Yan X Z, Liu J K, Xu Z Q, et al. Journal of China University of Petro-leum, 2010, 34(5), 109(in Chinese).闫相祯, 刘锦昆, 许志倩, 等. 中国石油大学学报(自然科学版), 2010, 34(5), 109.11 Wormsen A, Fjeldstad A, Kirkemo F, et al. International Journal of Fatigue, 2016, 96(2017), 43.12 Jin Q, Li M, Wen Q. Applied Mechanics and Materials, 2012, 204-208,2981.13 Tian Y, Wang J, Liu Y. Applied Mechanics and Materials, 2014, 685,43.14 Jin Q, Li B, Wen Q. Advanced Materials Research, 2012, 538-541,1683.15 GB/T 6398-2000. Metallic materials-fatigue testing-fatigue crack growth method. Standardization administration of the P.R.C, Beijing, 2000(in Chinese).GB/T 6398-2000. 金属材料疲劳裂纹扩展速率试验方法. 中华人民共和国标准化管理委员会,北京,2000.16 ASTM: E647-13. Standard test method for measurement of fatigue crack growth rates. In Annual Book of ASTM Standards, USA, 2008.17 Li L, Yang Y H, Xu Z, et al. Fatigue & Fracture of Engineering Mate-rials & Structures, 2015, 37(10),1124.18 Zhang H J, Shao Y B, Yang D P. China Offshore Oil and Gas, 2018, 30(6),158(in Chinese).张衡镜, 邵永波, 杨冬平. 中国海上油气, 2018, 30(6),158.19 Thorpe T W, Scott P M, Rance A, et al. International Journal of Fatigue, 1983, 5(3),123.20 Adedipe O, Brennan F, Kolios A. Fatigue & Fracture of Engineering Materials & Structures, 2016, 39(4),395.21 Adedipe O, Brennan F, Kolios A. Renewable & Sustainable Energy Reviews, 2016, 61,141.22 Dhinakaran S, Prakash R V. Materials Science & Engineering A, 2014, 609(609),204.23 Shih Y S, Chen J J. Nuclear Engineering & Design, 1999, 191(2),225.24 Adedipe O, Brennan F, Kolios A. Marine Structures, 2015, 42,115.25 Mehmanparast A, Davies C M, Dean D W, et al. Engineering Fracture Mechanics, 2013, 110(3),52.26 Mehmanparast A, Brennan F, Tavares I. Materials & Design, 2016, 114, 494.27 API SPEC 5L. Specification for line pipe, American Petroleum Institute: Washington, DC, USA, 2012.
[1] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[2] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed