Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22130-22135    https://doi.org/10.11896/cldb.19070188
  金属与金属基复合材料 |
氢环境下X52管线钢的抗氢性能
白光乾1, 王秋岩2, 邓海全2, 李冬林2, 李云1
1 西安交通大学化学工程与技术学院,西安 710049
2 中石化中原石油工程设计有限公司,濮阳 457001
Hydrogen Resistance of X52 Pipeline Steel Under Hydrogen Environment
BAI Guangqian1, WANG Qiuyan2, DENG Haiquan2, LI Donglin2, LI Yun1
1 School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
2 Sinopec Petroleum Engineering Zhongyuan Corporation, Puyang 457001, China
下载:  全 文 ( PDF ) ( 6926KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 天然气混氢(HCNG)作为一种新型输氢技术,对于实现氢气的大规模管网运输具有重要意义。但氢的存在会导致管道力学性能劣化,对管网的安全使用产生威胁。本工作以X52管线钢为研究对象,通过动态充氢慢拉伸试验研究了充氢对X52管线钢拉伸性能的影响;通过疲劳裂纹扩展试验研究了电解氢环境对X52管线钢裂纹扩展速率的影响。此外,还借助SEM对拉伸和疲劳试样的断口形貌进行观察,进而分析材料氢脆断裂机理。结果表明:(1)电化学充氢会改变材料的力学性能,随着充氢电流密度增大,材料的强度略微提高,但塑性显著下降;(2)拉伸试样断面微观结构的变化表明随着充氢电流密度增大,材料的断裂模式由韧窝韧性断裂过渡到准解理脆性断裂;(3)电解氢环境会加快X52管线钢的裂纹扩展速率,微观断口表明氢脆机制主导了裂纹扩展过程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白光乾
王秋岩
邓海全
李冬林
李云
关键词:  管线钢  电化学充氢  慢应变速率拉伸  疲劳裂纹扩展  氢脆    
Abstract: As a new technology for hydrogen transporting, hydrogen and compressed nature gas (HCNG) has significance on the realization of large-scale hydrogen transportationby pipeline network. However, the presence of hydrogen will lead to the mechanical properties degradation of pipeline metal, which seriously threatens the safe use of pipeline network. X52 pipeline steel was chosen as the research object. The influence of hydrogen charging current density on the tensile property of X52 was studied by simultaneous cathodic charging and slow straining rate test. The influence of electrolytic hydrogen environment on crack growth rate of X52 was studied through fatigue crack growth test. In addition, the fracture morphology of tensile and fatigue specimens was observed by means of SEM to analyze the mechanism of X52 hydrogen embrittlement fracture. Test results show that electrochemical hydrogen charging has effect on mechanical properties of X52. As charging current density elevates, the strength of materials enhances slightly but its plasticity decreases significantly. Changes in the microstructure of the tensile specimen section indicated that the fracture mode of material transforms from dimple ductile fracture to quasi-dissociative brittle fracture with elevated hydrogen charging current density. Electrolytic hydrogen environment will accelerate the crack growth rate of X52. Micro fractures indicate that hydrogen embrittlement mechanism dominates the crack propagation process.
Key words:  pipeline steel    electrochemical hydrogen charging    slow strain rate tension (SSRT)    fatigue crack growth    hydrogen embrittlement
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TG172  
基金资助: 浙江省重点研发计划(2020C01119)
通讯作者:  yunli@mail.xjtu.edu.cn   
作者简介:  李云,西安交通大学化学工程与技术学院化机系教授,博士研究生导师。从事过高效流体机械研究与开发、热泵系统的节能研究、煤化工中多相反应模拟与分析、过程系统能量集成技术等方面的研究。主持与参加国家863计划、国家自然科学基金、陕西省科技攻关项目,横向合作项目30余项。在国内外学术刊物及国内外学术会议上发表学术论文60余篇,其中SCI、EI收录论文40篇。获得授权发明专利6项、实用新型专利5项。作为第五完成人的项目“特殊介质能量系统热泵节能的理论、关键技术及应用”获2009年度陕西省科学技术二等奖。白光乾,西安交通大学化学工程与技术学院硕士研究生。主要研究方向为氢对金属材料的劣化。
引用本文:    
白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
BAI Guangqian, WANG Qiuyan, DENG Haiquan, LI Donglin, LI Yun. Hydrogen Resistance of X52 Pipeline Steel Under Hydrogen Environment. Materials Reports, 2020, 34(22): 22130-22135.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070188  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22130
1 Barreto L, Makihira A, Riahi K.International Journal of Hydrogen Energy, 2003, 28(3),267.2 Ma D, Li X.Chemical Enterprise Management, 2015, 390(31),170(in Chinese).麻冬, 李昕.化工管理, 2015, 390(31),170.3 Yuan J Q, Wang L P.Heat Treatment of Metals, 2015, 40(12),56(in Chinese).原佳强, 王莉萍.金属热处理, 2015, 40(12),56.4 Meng B, Gu C, Zhang L, et al.International Journal of Hydrogen Energy, 2017, 42(11),7404.5 Zhu W Y.Hydrogen embrittlement and stress corrosion cracking, Science Press, China, 2013(in Chinese).褚武扬.氢脆和应力腐蚀, 科学出版社, 2013.6 Zhang X Q, Jiang Q M.Pressure Vessel Technology, 2015, 32(11),47(in Chinese).张小强, 蒋庆梅.压力容器, 2015, 32(11),47.7 Jiang Q M, Zhang X Q.Pressure Vessel Technology, 2015, 29(8),48(in Chinese).蒋庆梅, 张小强.压力容器, 2015, 29(8),48.8 Arafin M A, Szpunar J A.Materials Science and Engineering, A, 2011, 528(15),4927.9 Mohtadi-bonab M A, Szpunar J A, Razavi-tousi S S.International Journal of Hydrogen Energy, 2013, 38(31),13831.10 Jin T Y, Cheng Y F.Corrosion Science, 2011, 53(2),850.11 Hu L, Chen J, Wang B, et al.Materials for Mechanical Engineering, 2015, 39(9),25(in Chinese).胡亮, 陈健, 汪兵, 等.机械工程材料, 2015, 39(9),25.12 Fan Y W, Wu M, Chen X, et al.Hot Working Technology, 2017, 46(4),48(in Chinese).范裕文, 吴明, 陈旭,等. 热加工工艺, 2017, 46(4),48.13 Zhao Y.Journal of Chinese Society for Corrosion and Protection, 2004, 24(5),293(in Chinese).赵颖.中国腐蚀与防护学报, 2004, 24(5),293.14 Liu Y, Li Y, Li Q.Acta Metallurgica Sinica, 2013, 49(9),1089(in Chinese).刘玉, 李焰, 李强.金属学报, 2013, 49(9),1089.15 Gadala I M, Alfantazi A.Metallurgical and Materials Transactions A, 2015, 46(7),3104.16 Chatzidouros E V, Traidia A, Devarapalli R S, et al.International Journal of Hydrogen Energy, 2018, 43(11), 5747.17 Zhong Y, Shan Y Y, Huo C Y, et al.Materials Review, 2003, 17(8),11(in Chinese).钟勇, 单以银, 霍春勇,等. 材料导报, 2003, 17(8),11.18 Hu H J, Li K, Wu W, et al.Journal of Xi'an Jiaotong University, 2016, 50(7),89(in Chinese).胡海军, 李康, 武玮,等. 西安交通大学学报, 2016, 50(7),89.19 Wang H H, Feng Y J, Hou F.Pressure Vessel Technology, 2015, 25(12),1(in Chinese).王和慧, 冯亚娟, 侯峰.压力容器, 2015, 25(12),1.20 Shen K, Xia B, Xu L, et al.Transactions of Materials and Heat Treatment, 2017, 38(8),76(in Chinese).谌康, 夏彬, 徐乐,等. 材料热处理学报, 2017, 38(8),76.21 Duan L N, Chen J, Wang B, et al.Heat Treatment of Metals, 2017, 42(6),1(in Chinese).段琳娜, 陈健, 汪兵,等. 金属热处理, 2017, 42(6),1.22 Tan W Z, Du Y L, Fu C, et al.Materials Protection, 1988, 3(3),10(in Chinese).谭文志, 杜元龙, 傅超,等. 材料保护, 1988, 3(3),10.23 Kong D J, Wu Y Z, Long D.International, 2013, 20(1),40.24 Beachem C D.Metallurgical Transactions, DOI: 10.1007/BF02642048.25 Oriani R A.Berichte der Bunsengesellschaft für physikalische Chemie, 2010, 76(8),848.26 Fan L, Li X G, Du C W, et al.Corrosion and Protection, 2012, 33(11),990(in Chinese).范林, 李晓刚, 杜翠薇,等. 腐蚀与防护, 2012, 33(11),990.
[1] 谢振康, 金伟良, 毛江鸿, 张军, 樊玮洁, 夏晋. 双向电迁移后混凝土内钢筋氢含量变化及影响[J]. 材料导报, 2020, 34(2): 2039-2045.
[2] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[3] 李凤侠, 张俊, 赵呈刚. 基于文献计量学的氢脆研究的演进、热点和趋势分析[J]. 材料导报, 2019, 33(Z2): 488-496.
[4] 翟建明, 徐彤, 王红霞, 马广青, 商学欣. 316L与16Mn材料抗高压氢脆性能研究[J]. 材料导报, 2019, 33(Z2): 497-500.
[5] 孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料导报, 2019, 33(z1): 373-376.
[6] 唐丽, 尹立孟, 王金钊, 刘成, 王学军. X80管线钢二次热循环的连续冷却转变行为及贝氏体相变动力学[J]. 材料导报, 2019, 33(18): 3119-3124.
[7] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[8] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[9] 谢 飞,王兴发,王 丹,孙东旭,戚建晶. 生物膜作用下管线钢应力腐蚀开裂行为研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1541-1548.
[10] 吴明, 郭紫薇, 谢飞, 王丹, 王义闯, 郭大成, 姜锦涛. 阴离子和硫酸盐还原菌作用下管线钢腐蚀行为的研究进展[J]. 材料导报, 2018, 32(19): 3435-3443.
[11] 黄广棋,张桂凯,罗朝以,唐涛. Fe-Al金属间化合物氢脆效应研究现状[J]. 《材料导报》期刊社, 2018, 32(11): 1878-1883.
[12] 高心心, 郭建章, 张海兵. 1 000 MPa级高强钢焊接件的氢脆敏感性研究[J]. 《材料导报》期刊社, 2017, 31(6): 93-97.
[13] 赵朋成, 刘振伟, 王璐璐, 高世一, 王振民. X65管线钢管闪光对焊工艺参数对焊接接头力学性能和缺陷的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 87-91.
[14] 谢飞, 李雪, 高四方, 王丹, 吴明. X80管线钢在含硫酸盐还原菌的土壤环境中的应力腐蚀开裂行为研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 69-77.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed