Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 93-97    https://doi.org/10.11896/j.issn.1005-023X.2017.06.019
  材料研究 |
1 000 MPa级高强钢焊接件的氢脆敏感性研究
高心心1, 2, 郭建章1, 张海兵2
1 青岛科技大学机电工程学院, 青岛 266061;
2 中国船舶重工集团公司第七二五研究所海洋
腐蚀与防护重点实验室, 青岛 266101
Hydrogen Embrittlement Susceptibility of 1 000 MPa Grade High
Strength Steel Weldment
GAO Xinxin1,2, GUO Jianzhang1, ZHANG Haibing2
1 College of Mechanical and Electrical Engineering, Qingdao University of Science and Technology, Qingdao 266061;

2 Science and Technology on Marine Corrosion and Protection Laboratory, Luoyang Ship
Materials Research Institute, Qingdao 266101
下载:  全 文 ( PDF ) ( 1703KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用氢渗透试验、慢应变速率拉伸试验(SSRT)研究了1 000 MPa级高强钢(HSS)焊接件在海水中的氢渗透行为及其应力腐蚀敏感性,结合SEM观察了试样的断口特征,并利用电化学试验和显微组织观察分析了焊接件不同区域的氢脆特征。结果表明:相对于焊缝区(WM)和母材区(BM),热影响区(HAZ)的自腐蚀电位最负、析氢电位最正,更容易发生腐蚀和析氢行为。热影响区的氢扩散系数最大,具有较强的吸氢倾向。动态电化学充氢对高强钢焊接件的影响主要体现在对塑性的损减方面;随着极化电位的负移,高强钢焊接件的强度没有明显变化,但断面收缩率、断后延伸率均减小,断裂方式逐渐由韧性断裂变为解理断裂;当极化电位约为-930 mV(vs SCE)时,高强钢焊接件的氢脆系数达25%;在不同充氢极化电位下,焊接件试样的断裂位置多在热影响区。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高心心
郭建章
张海兵
关键词:  高强钢  氢渗透  慢应变速率拉伸  氢脆敏感性    
Abstract: Hydrogen permeation behavior and stress corrosion sensitivity of 1 000 MPa grade high strength steel (HSS) weldment in sea water were studied by hydrogen permeation test and slow strain rate test (SSRT). The fracture characteristics were observed by SEM. Electrochemical test and microstructure observation were also applied to research the hydrogen embrittlement (HE) of the weldment. The results showed that heat affected zone (HAZ) compared with the weld material (WM) and the base metal(BM) had the most negative open circuit potential(OCP) and most positive hydrogen evolution potential, which meant hydrogen evolution and corrosion would be easier to take place in the HAZ. The HAZ of high strength steel weldment had a maximum hydrogen diffusion coefficient and strong tendency to absorb hydrogen. The effect of dynamic electrochemical hydrogen charging on the weldment of high strength steel mainly reflected in the reduction of its plasticity. The strength of the high strength steel weldment showed slight differences under various polarization potentials. While with polarization potential negative shifted, the shrinkage and the elongation decreased and the fracture mode gradually changed from ductile to cleavage. The hydrogen embrittlement coefficient of high strength steel weldment reached the threshold of 25% while the cathodic potential was about -930 mV (vs SCE). The fracture locations of the specimen were mostly in the HAZ under different cathodic potentials.
Key words:  high strength steel    hydrogen permeation    slow strain rate test    hydrogen embrittlement susceptibility
               出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TG174.2+2  
通讯作者:  郭建章:男,1969年生,博士,教授,研究方向为过程装备腐蚀机理及防护方法,E-mail:guojzqd@163.com   
作者简介:  高心心:女,1990年生,硕士研究生,研究方向为金属材料的腐蚀与防护,E-mail:283922235@qq.com
引用本文:    
高心心, 郭建章, 张海兵. 1 000 MPa级高强钢焊接件的氢脆敏感性研究[J]. 《材料导报》期刊社, 2017, 31(6): 93-97.
GAO Xinxin, GUO Jianzhang, ZHANG Haibing. Hydrogen Embrittlement Susceptibility of 1 000 MPa Grade High
Strength Steel Weldment. Materials Reports, 2017, 31(6): 93-97.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.019  或          http://www.mater-rep.com/CN/Y2017/V31/I6/93
1 Billingham J, Sharp J V, Spurrier J. Review of the performance of high strength steel used offshore[M].London:Health and Safety Executive,2003.
2 Fernandez J. Stress corrosion cracking of high strength stainless st-eels for use as strand in prestressed marine environment concrete construction[J]. Mater Corros,2015,66(11):1269.
3 Gajek A, Wolarek Z, Zakroczymski T. Behaviour of hydrogen in gas nitrided iron studied by electrochenucal permeation and desorption techniques[J]. Corros Sci,2012,58:260.
4 Hardie D, Charles E A, Lopez A H. Hydrogen embrittlement of high strength pipeline steels[J]. Corros Sci,2006,48(12):4378.
5 Liu Q, Atrens A D, Shi Z, et al. Determination of the hydrogen fugacity during electrolytic charging of steel [J]. Corros Sci,2014,87(5):239.
6 Tan Yanyan, Ma Chunwei. Microstructure and mechanical properties of multrpass welded joint for high strength steel[J].Mater Rev:Res,2015,29(4):114(in Chinese).
谭艳艳, 马春伟. 高强钢多道焊接头显微组织及力学性能[J].材料导报:研究篇,2015,29(4):114.
7 Liu Yu, Li Yan, Li Qiang. Effect of cathodic polarization on hydrogen embrittlement susceptibility of X80 pipeline steel in simulated deep sea environment[J]. Acta Metall Sin,2013,49(9):1089(in Chinese).
刘玉,李焰,李强.阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J].金属学报,2013,49(9):1089.
8 Zhang Timing, Zhao Weimin, Guo Wang, et al. Susceptibility to hydrogen embrittlement of X65 steel under cathodic protection in artificial sea water[J]. J Chin Soc Corros Protection,2014,34(4):315(in Chinese).
张体明, 赵卫民, 郭望, 等. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J]. 中国腐蚀与防护学报,2014,34(4):315.
9 Ma Jiankai, Wang Youhong, Yang Yutan, et al. Microstructure and property of Cu-Cr-Zr alloys with high strength and high conductivity[J]. Mater Rev:Res,2015,29(11):96(in Chinese).
马健凯, 王宥宏, 杨雨潭, 等. 高强高导Cu-Cr-Zr合金的微观组织与性能[J]. 材料导报:研究篇,2015,29(11):96.
10 Shi Lin, Zheng Zhijun, Gao Yan. Mechanism and research methods of pitting corrosion of stainless steels[J].Mater Rev:Rev,2015,29(12):79(in Chinese).
石林, 郑志军, 高岩. 不锈钢的点蚀机理及研究方法[J]. 材料导报:综述篇,2015,29(12):79.
11 Zhang Yingrui, Dong Chaofang, Li Xiaogang, et al. Hydrogen induce dcracking behaviors of X70 Pipeline steel and its welds under electrochemical charging[J]. Acta Metall Sin,2006,42(5):521(in Chinese).
张颖瑞, 董超芳, 李晓刚, 等. 电化学充氢条件下X70管线钢及其焊缝的氢致开裂行为[J]. 金属学报,2006,42(5):521.
12 Zhang T M, Zhao W M, Guo W, et al. Hydrogen permeation behavior through HSLA steels and its implications on hydrogen embrittlement susceptibility[J]. Appl Mechan Mater,2013,302:310.
13 Sun Yongwei, Chen Jizhi, Liu Jun. Study on hydrogen embrittlement susceptibility of 1 000MPa grade 0Cr16Ni5Mo steel [J]. Acta Metall Sin,2015,51(11):1315(in Chinese).
孙永伟, 陈继志, 刘军. 1 000 MPa级0Cr16Ni5Mo钢的氢脆敏感性研究[J].金属学报,2015,51(11):1315.
14 ISO 17081. Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique [S]. 2004.
15 崔忠圻,谭耀春.金属学与热处理(第2版) [M].哈尔滨:机械工业出版社,1989:246.
16 Mo Zhihao, Ding Jian, Miu Luhai. Experimental study on hydrogen induced cracking in welded joint of 16MnR (HIC) steel [J].Metal Processing: Hot Working,2008(4):57(in Chinese).
莫志豪, 丁键, 廖禄海. 16MnR(HIC)钢焊接件抗氢致裂纹的试验研究[J]. 金属加工:热加工,2008(4):57.
17 Li Yongfeng. Research on hydrogen permeation characteristic in steels and hydrogen permeation resistance mechanism of plating[D]: Shanghai: East China University of Science and Technology,2012(in Chinese).
李勇峰. 氢在钢中的渗透特性及镀层阻氢渗透机理的研究[D]: 上海: 华东理工大学,2012.
18 Maier H J, Popp W, Kaesche H. Effects of hydrogen on ductile fracture of a spheroidized low alloy steel[J]. Mater Sci Eng A,1995,191(1):17.
19 Tan Wenzhi, Du Yuanlong, Fu Chao. Environmental embrittlement of ZC-120 steel in sea water induced by cathodic protection[J].Mater Protection,1998,21(3):10(in Chinese).
谭文志, 杜元龙, 傅超. 阴极保护导致ZC-120钢在海水中环境氢脆[J].材料保护,1988,21(3):10.
20 高荣杰, 杜敏. 海洋腐蚀与防护技术[M]. 北京: 化学工业出版社,2011:136.
[1] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[2] 闫二虎, 黄浩然, 刘贵仲, 班煜峰, 徐芬, 孙立贤. 一种氢渗透模型的构建及其在Nb基渗氢合金中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 725-729.
[3] 高古辉, 桂晓露, 谭谆礼, 白秉哲. Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 74-81.
[4] 陈建华,张喜燕,任毅. 热输入对AZ31B镁合金/PRO500超高强钢TIG熔-钎连接特性的影响*[J]. 材料导报编辑部, 2017, 31(10): 56-60.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed