Research Status of Compatibility of Hydrogen-blended Natural Gas Pipeline
ZHAO Qian1, XING Yunying1, WANG Xiuyun2, YANG Zhile1, ZHANG Lei1,*
1 Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2 Safetech Research Institute Beijing Co., Ltd., Beijing 102200, China
Abstract: As a clean energy with zero carbon emission, hydrogen energy is an important force to promote China's energy transformation. Among them, pipeline transportation can not only fully solve the problem of electricity consumption, promote the development of low-carbon economy, but alsoserve as the most economical way of long-distance transportation of hydrogen energy. At present, domestic hydrogen doped pipeline engineering experience is relatively small, and most of them are low pressure and low steel grade pipelines. There is no unified understanding on the design and evaluation of hydrogen-blended pipeline. This article summarizes the research progress of hydrogen-blended natural gas pipelines in the literature form China and foreign countries, expounds the feasibility and main challenges of the hydrogen-blended pipelines, and outlines the key parameters including the tensile properties, fracture toughness, and fatigue performance in some standards. In the end, the effect of hydrogen on the compatibility of the natural gas pipelines is discussed according to the performance test results of hydrogen-blended natural gas pipelines. This will provide fundamental guideline and reference the development of hydrogen-blended natural gas pipeline.
赵茜, 邢云颖, 王修云, 杨芝乐, 张雷. 天然气管道掺氢输送相容性研究现状[J]. 材料导报, 2024, 38(12): 22110125-7.
ZHAO Qian, XING Yunying, WANG Xiuyun, YANG Zhile, ZHANG Lei. Research Status of Compatibility of Hydrogen-blended Natural Gas Pipeline. Materials Reports, 2024, 38(12): 22110125-7.
1 Li J F, Su Y, Zhang H, et al. Natural Gas Industry, 2021, 41(4), 137(in Chinese). 李敬法, 苏越, 张衡, 等. 天然气工业, 2021, 41(4), 137. 2 Yang J, Wang X L, Li Z Z, et al. Pressure Vessel Technology, 2021, 38(2), 80(in Chinese). 杨静, 王晓霖, 李遵照, 等. 压力容器, 2021, 38(2), 80. 3 Li Y X, Zhang R, Liu C W, et al. Oil & Gas Storage and Transportation, 2022, 41(6), 732(in Chinese). 李玉星, 张睿, 刘翠伟, 等. 油气储运, 2022, 41(6), 732. 4 Shi H, Lyu Y, Tan G L. Natural Gas and Oil, 2022, 40(4), 23(in Chinese). 时浩, 吕杨, 谭更彬. 天然气与石油, 2022, 40(4), 23. 5 Messaodani Z L, Rigas F, Hamid M D B, et al. International Journal of Hydrogen Energy, 2016, 41(39), 17511. 6 Chu W Y, Qiao L J, Li J X, et al. Hydrogen embrittlement and stress corrosion cracking, Science Press, China, 2013, pp.116(in Chinese). 褚武扬, 乔立杰, 李金许, 等. 氢脆和应力腐蚀, 科学出版社, 2013, pp.116. 7 Liu L, Han Y. Yunnan Chemical Technology, 2022, 49(8), 70(in Chinese). 刘伦, 韩毅. 云南化工, 2022, 49(8), 70. 8 Du Y, Gao X, Lan L, et al. International Journal of Hydrogen Energy, 2019, 44(60), 32292. 9 Wang H B, Xu C L, Hu X W, et al. Heat Treatment of Metals, 2021, 46(8), 51(in Chinese). 王海波, 徐震霖, 胡学文, 等. 金属热处理, 2021, 46(8), 51. 10 Sandeep K D, Manish V. International Journal of Hydrogen Energy, 2018, 43(46), 21603. 11 Song J, Curtin W A. Nature Materials, 2013, 12(2), 145. 12 Liu Q L, Venezuela J, Zhang M X, et al. Corrosion Science, 2016, 111, 770. 13 Venezuela J, Zhou Q J, Liu Q L, et al. Corrosion Science, 2016, 111, 602. 14 Zhou C L, He M H, Guo J, et al. Chemical Industry and Engineering Progress, 2022, 41(2), 519(in Chinese). 周池楼, 何默涵, 郭晋, 等. 化工进展, 2022, 41(2), 519. 15 Lan L, Kong X, Qiu C, et al. Acta Metallurgica Sinica, 2021, 57(7), 845. 16 An T, Zheng S, Peng H, et al. Materials Science and Engineering, 2017, 700, 321. 17 Nanninga N E, Levy Y, Drexler E S. Corrosion Science, 2012, 59, 1. 18 Amaro R L, Rustagi N, Findley K O, et al. International Journal of Fatigue, 2014, 59(2), 262. 19 Amaro R L, Drexler E S, Slifka A J. International Journal of Fatigue, 2014, 62(1), 249. 20 Briottet L, Moro I, Lemoine P. International Journal of Hydrogen Energy, 2012, 37(22), 17616. 21 Moro I, Briottet L, Lemoine P, et al. Materials Science and Engineering:A, 2010, 527(27-28), 7252. 22 Meng B, Gu C H, Zhang L, et al. International Journal of Hydrogen Energy, 2017, 42 (11), 7401. 23 Zhou D, Li T, Huang D, et al. International Journal of Hydrogen Energy, 2021, 46(10), 7402. 24 Wang M, Akiyama E, Tsuzaki K. Scripta Materialia, 2005, 53, 713. 25 Dong J N, Liu Y S, Zhang X C, et al. Materials Protection, 2022, 55(3), 53(in Chinese). 董京楠, 刘奕杉, 张旭初, 等. 材料保护, 2022, 55(3), 53. 26 Rao F R. Journal of Building Materials, 2023, 26(4), 369(in Chinese). 饶烽瑞. 建筑材料学报, 2023,26(4), 369. 27 Jiang J X, Zhang H, Gu L, et al. Oil & Gas Storage and Transportation, 2022, 41(3), 281(in Chinese). 江金旭, 张宏, 顾磊, 等. 油气储运, 2022, 41(3), 281. 28 Song E J, Suh D W, Bhadeshia H K. Computational Materials Science, 2013, 79, 36. 29 Zhang, S, Li J, An T, et al. International Journal of Hydrogen Energy, 2021, 46(39), 20621. 30 Chris S M, Brian P S, Kevin A N, et al. In:Conference Record of the ASME 2011 Pressure Vessels and Piping. USA, 2011. 31 Chris S M, Brian P S, Kevin A. N, et al. In:Conference Record of the ASME 2010 Pressure Vessels and Piping Division/K-PVP. Bellevue, Washington, USA, 2010, PVP2010-25825. 32 Robinson S L, Stoltz R E, In:Hydrogen effects in metals, ed. I. M. Bernstein and A. W. Thompson, The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME), Inc. , New York, NY, pp.987. 33 Alvaro A, Olden V, Macadre A, et al. Materials Science and Engineering A, 2014, 597, 29. 34 Nguyen T T, Park J S, Kim W S, et al. Materials Science and Enginee-ring, 2020, 781(20), 139114. 1. 35 Stalheim, D, Boggess T, Bromley D, et al. In:Conference Record of the 9th International Pipeline Conference. Canada, 2012. 36 Huang J, Wu Z, Zhang R M, et al. Foundry Technology, 2022, 43(8), 690(in Chinese). 黄俊, 伍曾, 张荣茂, 等. 铸造技术, 2022, 43(8), 690. 37 Nanninga, N, Slifka A, Levy Y, et al. Journal of research of the National Institute of Standards and Technology, 2010, 115(6), 437. 38 Holbrook J H, Cialone H J, Mayfield M E, et al. Effect of hydrogen on low-cycle-fatigue life and subcritical crack growth in pipeline steels. In energy applications of applied science unoer subcontract No. 550772-S, United States. 1982, 9, 142. 39 Slifka A J, Drexler E S, Nanninga N E, et al. Corrosion Science, 2014, 78, 313. 40 Nagumo M. Fundamentals of hydrogen embrittlement, Springer Science+Business Media Singapore, Tokyo Japan, 2016, pp 921. 41 Han Y D, Wang R Z, Wang H, et al. International Journal of Hydrogen Energy, 2019, 44(39), 22380. 42 Al-Mansour M, Alfantazi A, El-Boujdaini M. Materials & Design, 2009, 30(10), 4088. 43 Dong C F, Liu Z Y, Li X G, et al. International Journal of Hydrogen Energy, 2009, 34, 9879. 44 Nanninga N E, Levy Y S, Drexler E S, et al. Corrosion Science, 2012, 59, 1. 45 Cauwels M, Claeys L, Depover T, et al. Frattura ed Integrità Strutturale, 2020, 14(51), 449. 46 Komatsuzaki Y, Joo H, Yamada K. Engineering Fracture Mechanics, 2008, 75(3-4), 551. 47 Capelle J, Gilgert J, Dmytrakh I, et al. International Journal of Hydrogen Energy, 2008, 33(24), 7630. 48 Mueller-Syring H. In:Hydrogen-Natural Natural Gas Mixtures Pipeline Technology Conference. Hannover, Germany, 2009, pp.22. 49 Boukortt, H, Amara M, Hadj M M, et al. International Journal of Hydrogen Energy, 2018, 43(42), 19615. 50 Yamabe J, Yoshikawa M, Matsunaga H, et al. Procedia Structural Integrity, 2016, 2, 525. 51 Loginow A, Phelps E. Journal of Engineering for Industry, 1975, 97(1), 274. 52 Takasawa K, Ikeda R, Ishikawa N. International Journal of Hydrogen Energy, 2012, 37(3), 2669. 53 Huang G, Zheng J, Meng B, et al. Journal of Materials Engineering and Performance, 2020, 29(3), 1589.