Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22110125-7    https://doi.org/10.11896/cldb.22110125
  金属与金属基复合材料 |
天然气管道掺氢输送相容性研究现状
赵茜1, 邢云颖1, 王修云2, 杨芝乐1, 张雷1,*
1 北京科技大学新材料技术研究院,北京 100083
2 安科工程技术研究院(北京)有限公司,北京 102200
Research Status of Compatibility of Hydrogen-blended Natural Gas Pipeline
ZHAO Qian1, XING Yunying1, WANG Xiuyun2, YANG Zhile1, ZHANG Lei1,*
1 Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Safetech Research Institute Beijing Co., Ltd., Beijing 102200, China
下载:  全 文 ( PDF ) ( 4167KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢能作为一种零碳排的清洁能源,是推动中国能源转型的重要力量。其中,管道输送既可以充分解决弃电消纳难题,促进低碳经济发展,还是氢能源长距离运输的最为经济的输送方式。目前国内的掺氢管道工程经验相对较少,且多为低压低钢级管道,在掺氢输送管道管材的设计和评价方面还没有形成统一的认识。本文系统总结了国内外关于天然气管道掺氢输送的研究进展,阐述了掺氢输送的可行性和面临的主要挑战,重点梳理了标准中提到的管材拉伸性能、断裂韧性、疲劳性能等几项关键性能指标,并根据掺氢管道的性能测试结果,讨论分析了掺氢对天然气管道相容性的影响,为天然气管道掺氢的发展研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵茜
邢云颖
王修云
杨芝乐
张雷
关键词:  气相氢环境  天然气管道管材  氢压  氢脆敏感性  相容性研究    
Abstract: As a clean energy with zero carbon emission, hydrogen energy is an important force to promote China's energy transformation. Among them, pipeline transportation can not only fully solve the problem of electricity consumption, promote the development of low-carbon economy, but alsoserve as the most economical way of long-distance transportation of hydrogen energy. At present, domestic hydrogen doped pipeline engineering experience is relatively small, and most of them are low pressure and low steel grade pipelines. There is no unified understanding on the design and evaluation of hydrogen-blended pipeline. This article summarizes the research progress of hydrogen-blended natural gas pipelines in the literature form China and foreign countries, expounds the feasibility and main challenges of the hydrogen-blended pipelines, and outlines the key parameters including the tensile properties, fracture toughness, and fatigue performance in some standards. In the end, the effect of hydrogen on the compatibility of the natural gas pipelines is discussed according to the performance test results of hydrogen-blended natural gas pipelines. This will provide fundamental guideline and reference the development of hydrogen-blended natural gas pipeline.
Key words:  gas phase hydrogen environment    natural gas pipeline    hydrogen pressure    hydrogen embrittlement sensitivity    compatibility study
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TE83  
通讯作者:  *张雷,北京科技大学新材料技术研究院教授、博士研究生导师。2000年本科毕业于浙江大学金属材料及热处理专业,2005年博士毕业于浙江大学材料系。现任北京科技大学新材料技术研究院材料失效与控制研究所副所长,2015年英国利兹大学访问学者,曾担任华人腐蚀工程师协会(ACCE)副主席(2013—2014)、国际腐蚀工程师协会(NACE)提名委员会委员(2017—2019)。先后负责国家自然科学基金四项、国家重点研发计划专题一项、内蒙古自治区重大专项1项、工信部船舶专项子课题一项、国际合作项目一项,参加国家重大专项子课题三项、自然基金重点项目一项。累计发表SCI/EI论文80余篇,近5年第一/通信作者SCI/EI论文近40余篇,参编论著五部,获专利10项、参编国家标准一项、获行业科技奖两项。自2009年负责北科大检测中心腐蚀检测CNAS和CMA认证并担任授权签字人。长期从事大学和研究生腐蚀教学工作。zhanglei@ustb.edu.cn   
作者简介:  赵茜,2018年6月、2022年6月分别于南阳师范学院和北京科技大学获得工学学士学位和硕士学位。现为北京科技大学新材料技术研究院博士研究生,在张雷教授的指导下进行研究。目前主要研究领域为钢铁材料的氢脆与应力腐蚀开裂及失效分析。目前发表SCI论文1篇,授权专利2篇。
引用本文:    
赵茜, 邢云颖, 王修云, 杨芝乐, 张雷. 天然气管道掺氢输送相容性研究现状[J]. 材料导报, 2024, 38(12): 22110125-7.
ZHAO Qian, XING Yunying, WANG Xiuyun, YANG Zhile, ZHANG Lei. Research Status of Compatibility of Hydrogen-blended Natural Gas Pipeline. Materials Reports, 2024, 38(12): 22110125-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110125  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22110125
1 Li J F, Su Y, Zhang H, et al. Natural Gas Industry, 2021, 41(4), 137(in Chinese).
李敬法, 苏越, 张衡, 等. 天然气工业, 2021, 41(4), 137.
2 Yang J, Wang X L, Li Z Z, et al. Pressure Vessel Technology, 2021, 38(2), 80(in Chinese).
杨静, 王晓霖, 李遵照, 等. 压力容器, 2021, 38(2), 80.
3 Li Y X, Zhang R, Liu C W, et al. Oil & Gas Storage and Transportation, 2022, 41(6), 732(in Chinese).
李玉星, 张睿, 刘翠伟, 等. 油气储运, 2022, 41(6), 732.
4 Shi H, Lyu Y, Tan G L. Natural Gas and Oil, 2022, 40(4), 23(in Chinese).
时浩, 吕杨, 谭更彬. 天然气与石油, 2022, 40(4), 23.
5 Messaodani Z L, Rigas F, Hamid M D B, et al. International Journal of Hydrogen Energy, 2016, 41(39), 17511.
6 Chu W Y, Qiao L J, Li J X, et al. Hydrogen embrittlement and stress corrosion cracking, Science Press, China, 2013, pp.116(in Chinese).
褚武扬, 乔立杰, 李金许, 等. 氢脆和应力腐蚀, 科学出版社, 2013, pp.116.
7 Liu L, Han Y. Yunnan Chemical Technology, 2022, 49(8), 70(in Chinese).
刘伦, 韩毅. 云南化工, 2022, 49(8), 70.
8 Du Y, Gao X, Lan L, et al. International Journal of Hydrogen Energy, 2019, 44(60), 32292.
9 Wang H B, Xu C L, Hu X W, et al. Heat Treatment of Metals, 2021, 46(8), 51(in Chinese).
王海波, 徐震霖, 胡学文, 等. 金属热处理, 2021, 46(8), 51.
10 Sandeep K D, Manish V. International Journal of Hydrogen Energy, 2018, 43(46), 21603.
11 Song J, Curtin W A. Nature Materials, 2013, 12(2), 145.
12 Liu Q L, Venezuela J, Zhang M X, et al. Corrosion Science, 2016, 111, 770.
13 Venezuela J, Zhou Q J, Liu Q L, et al. Corrosion Science, 2016, 111, 602.
14 Zhou C L, He M H, Guo J, et al. Chemical Industry and Engineering Progress, 2022, 41(2), 519(in Chinese).
周池楼, 何默涵, 郭晋, 等. 化工进展, 2022, 41(2), 519.
15 Lan L, Kong X, Qiu C, et al. Acta Metallurgica Sinica, 2021, 57(7), 845.
16 An T, Zheng S, Peng H, et al. Materials Science and Engineering, 2017, 700, 321.
17 Nanninga N E, Levy Y, Drexler E S. Corrosion Science, 2012, 59, 1.
18 Amaro R L, Rustagi N, Findley K O, et al. International Journal of Fatigue, 2014, 59(2), 262.
19 Amaro R L, Drexler E S, Slifka A J. International Journal of Fatigue, 2014, 62(1), 249.
20 Briottet L, Moro I, Lemoine P. International Journal of Hydrogen Energy, 2012, 37(22), 17616.
21 Moro I, Briottet L, Lemoine P, et al. Materials Science and Engineering:A, 2010, 527(27-28), 7252.
22 Meng B, Gu C H, Zhang L, et al. International Journal of Hydrogen Energy, 2017, 42 (11), 7401.
23 Zhou D, Li T, Huang D, et al. International Journal of Hydrogen Energy, 2021, 46(10), 7402.
24 Wang M, Akiyama E, Tsuzaki K. Scripta Materialia, 2005, 53, 713.
25 Dong J N, Liu Y S, Zhang X C, et al. Materials Protection, 2022, 55(3), 53(in Chinese).
董京楠, 刘奕杉, 张旭初, 等. 材料保护, 2022, 55(3), 53.
26 Rao F R. Journal of Building Materials, 2023, 26(4), 369(in Chinese).
饶烽瑞. 建筑材料学报, 2023,26(4), 369.
27 Jiang J X, Zhang H, Gu L, et al. Oil & Gas Storage and Transportation, 2022, 41(3), 281(in Chinese).
江金旭, 张宏, 顾磊, 等. 油气储运, 2022, 41(3), 281.
28 Song E J, Suh D W, Bhadeshia H K. Computational Materials Science, 2013, 79, 36.
29 Zhang, S, Li J, An T, et al. International Journal of Hydrogen Energy, 2021, 46(39), 20621.
30 Chris S M, Brian P S, Kevin A N, et al. In:Conference Record of the ASME 2011 Pressure Vessels and Piping. USA, 2011.
31 Chris S M, Brian P S, Kevin A. N, et al. In:Conference Record of the ASME 2010 Pressure Vessels and Piping Division/K-PVP. Bellevue, Washington, USA, 2010, PVP2010-25825.
32 Robinson S L, Stoltz R E, In:Hydrogen effects in metals, ed. I. M. Bernstein and A. W. Thompson, The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME), Inc. , New York, NY, pp.987.
33 Alvaro A, Olden V, Macadre A, et al. Materials Science and Engineering A, 2014, 597, 29.
34 Nguyen T T, Park J S, Kim W S, et al. Materials Science and Enginee-ring, 2020, 781(20), 139114. 1.
35 Stalheim, D, Boggess T, Bromley D, et al. In:Conference Record of the 9th International Pipeline Conference. Canada, 2012.
36 Huang J, Wu Z, Zhang R M, et al. Foundry Technology, 2022, 43(8), 690(in Chinese).
黄俊, 伍曾, 张荣茂, 等. 铸造技术, 2022, 43(8), 690.
37 Nanninga, N, Slifka A, Levy Y, et al. Journal of research of the National Institute of Standards and Technology, 2010, 115(6), 437.
38 Holbrook J H, Cialone H J, Mayfield M E, et al. Effect of hydrogen on low-cycle-fatigue life and subcritical crack growth in pipeline steels. In energy applications of applied science unoer subcontract No. 550772-S, United States. 1982, 9, 142.
39 Slifka A J, Drexler E S, Nanninga N E, et al. Corrosion Science, 2014, 78, 313.
40 Nagumo M. Fundamentals of hydrogen embrittlement, Springer Science+Business Media Singapore, Tokyo Japan, 2016, pp 921.
41 Han Y D, Wang R Z, Wang H, et al. International Journal of Hydrogen Energy, 2019, 44(39), 22380.
42 Al-Mansour M, Alfantazi A, El-Boujdaini M. Materials & Design, 2009, 30(10), 4088.
43 Dong C F, Liu Z Y, Li X G, et al. International Journal of Hydrogen Energy, 2009, 34, 9879.
44 Nanninga N E, Levy Y S, Drexler E S, et al. Corrosion Science, 2012, 59, 1.
45 Cauwels M, Claeys L, Depover T, et al. Frattura ed Integrità Strutturale, 2020, 14(51), 449.
46 Komatsuzaki Y, Joo H, Yamada K. Engineering Fracture Mechanics, 2008, 75(3-4), 551.
47 Capelle J, Gilgert J, Dmytrakh I, et al. International Journal of Hydrogen Energy, 2008, 33(24), 7630.
48 Mueller-Syring H. In:Hydrogen-Natural Natural Gas Mixtures Pipeline Technology Conference. Hannover, Germany, 2009, pp.22.
49 Boukortt, H, Amara M, Hadj M M, et al. International Journal of Hydrogen Energy, 2018, 43(42), 19615.
50 Yamabe J, Yoshikawa M, Matsunaga H, et al. Procedia Structural Integrity, 2016, 2, 525.
51 Loginow A, Phelps E. Journal of Engineering for Industry, 1975, 97(1), 274.
52 Takasawa K, Ikeda R, Ishikawa N. International Journal of Hydrogen Energy, 2012, 37(3), 2669.
53 Huang G, Zheng J, Meng B, et al. Journal of Materials Engineering and Performance, 2020, 29(3), 1589.
[1] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[2] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[3] 高心心, 郭建章, 张海兵. 1 000 MPa级高强钢焊接件的氢脆敏感性研究[J]. 《材料导报》期刊社, 2017, 31(6): 93-97.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed