Mesoporous Spherical Co3O4/NiO/CuO Derived from MOF with High Specific Capacitance
GAO Yaqian1, ZHAO Yajuan1, XIE Huidong1,*, HU Changyu1, WANG Yibo1, WANG Kangkang1, YANG Chang2
1 School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China 2 Engineering Comprehensive Training Center, Xi'an University of Architecture and Technology, Xi'an 710055, China
Abstract: CoNiCu-MOF metal-organic frames were synthesized by a solvothermal method, and the Co3O4/NiO/CuO electrode materials were prepared by a subsequent calcination of CoNiCu-MOF. The morphology, specific surface area, cyclic voltammetric curves at different scanning speeds, galvanostatic charge/discharge curves at different current densities, and the cyclic stability of the materials were measured. An asymmetric supercapacitor device was assembled with Co3O4/NiO/CuO and activated carbon as the positive and negative electrodes, respectively, and its electrochemical properties were measured. Results showed that the Co3O4/NiO/CuO material had a porous structure and a large specific surface area (50.24 m2·g-1). The specific capacitance of Co3O4/NiO/CuO was as high as 3 682.2 F·g-1 at a current density of 1 A·g-1. The maximum energy density of the assembled Co3O4/NiO/CuO∥AC asymmetric supercapacitor achieved up to 186.8 Wh·kg-1 within a potential window of 1.45 V and a power density of 7 249.8 W·kg-1. The excellent performance of Co3O4/NiO/CuO as a supercapacitor electrode material makes it have a wide application prospect as energy storage devices.
1 Khan I, Baig N, Ali S, et al. Energy Storage Materials, 2021, 35, 443. 2 Wu Z P, Lu X F, Zang S Q, et al. Advanced Functional Materials, 2020, 30(15), 1910274. 3 Chen S H, Qiu L, Cheng H M. Chemical Reviews, 2020, 120(5), 2811. 4 Chen J X, Zhu R J, Sheng N, et al. Journal of Chemical Industry and Engineering, 2022, 73(9), 4194 (in Chinese). 陈健鑫, 朱瑞杰, 盛楠, 等. 化工学报, 2022, 73(9), 4194. 5 Dou Q, Park H S. Energy & Environmental Materials, 2020, 3(3), 286. 6 Choudhary N, Li C, Moore J, et al. Advanced Materials, 2017, 29(21), 1605336. 7 Liu Y, Li G, Guo Y, et al. ACS Applied Materials & Interfaces, 2017, 9(16), 14043. 8 Raza W, Ali F, Raza N, et al. Nano Energy, 2018, 52, 441. 9 Wang Y G, Song Y F, Xia Y Y. Chemical Society Reviews, 2016, 45, 5925. 10 Ren J W, Wang Y, Cai W F. Chemical Industry and Engineering, 2022, 39(5), 78 (in Chinese). 任建伟, 王燕, 蔡旺锋. 化学工业与工程, 2022, 39(5), 78. 11 Chen X, Paul R, Dai L. National Science Review, 2017, 4(3), 453. 12 Hosaka T, Kubota K, Hameed A S, et al. Chemical Reviews, 2020, 120(14), 6358. 13 Zuo W H, Li R Z, Zhou C, et al. Advanced Science, 2017, 4(7), 1600539. 14 Zhou Y, Mao Z, Wang W, et al. ACS Applied Materials & Interfaces, 2016, 8(42), 28904. 15 Cheng J Y, Chen S M, Chen D, et al. Journal of Materials Chemistry A, 2018, 6(41), 20254. 16 Silva P, Vilela S M F, Tome J P C, et al. Chemical Society Reviews, 2015, 44, 6774. 17 Xia W, Mahmood A, Zou R, et al. Energy & Environmental Science, 2015, 8, 1837. 18 Sun L, Hendon C H, Minier M A, et al. Journal of the American Chemical Society, 2015, 137(19), 6164. 19 Wang L, Han Y, Feng X, et al. Coordination Chemistry Reviews, 2016, 307, 361. 20 Hong D H, Shim H S, Ha J, et al. Bulletin of the Korean Chemical So-ciety, 2021, 42(7), 956. 21 Xiao Y, Guo X, Yang N, et al. Journal of Energy Chemistry, 2021, 58, 508. 22 Han Y, Zhao M, Dong L, et al. Journal of Materials Chemistry A, 2015, 3(45), 22542. 23 Li S, Duan Y, Teng Y, et al. Applied Surface Science, 2019, 478, 247. 24 Bigdeli H, Moradi M, Hajati S, et al. Physica E-Low-Dimensional Systems & Nanostructures, 2017, 94, 158. 25 Salunkhe R R, Tang J, Kamachi Y, et al. ACS Nano, 2015, 9(6), 6288. 26 Zheng J H, Zhang R M, Wang X G, et al. Research on Chemical Intermediates, 2018, 44(9), 5569. 27 Liu Y, Cao X, Jiang D, et al. Journal of Materials Chemistry A, 2018, 6(22), 10474. 28 Mustaqeem M, Naikoo G A, Rahimi F, et al. Journal of Energy Storage, 2022, 51, 104330. 29 Wang G, Huang J, Chen S, et al. Journal of Power Sources, 2011, 196(13), 5756. 30 Veeman S, Karuppuchamy S. Ceramics International, 2022, 48(18), 26806. 31 Zhang Y X, Kuang M, Wang J J. CrystEngComm, 2014, 16, 4892. 32 Fang Z, Rehman S U, Sun M, et al. Journal of Materials Chemistry A, 2018, 6(42), 21131. 33 Vijayakumar S, Nagamuthu S, Muralidharan G. ACS Sustainable Chemistry & Engineering, 2013, 1(9), 1110. 34 Yan L, Niu L, Shen C, et al. Electrochimica Acta, 2019, 306, 529. 35 Guan C, Zhao W, Hu Y, et al. Nanoscale Horizons, 2017, 2(2), 99. 36 Jana S, Mondal A, Ghosh A. Applied Catalysis B-Environmental, 2018, 232, 26. 37 Mohamed S G, Hussain I, Sayed M S, et al. Journal of Alloys and Compounds, 2020, 842, 155639. 38 Wang Y, Liu Y, Wang H, et al. ACS Applied Energy Materials, 2019, 2(3), 2063. 39 Zhang Y, Wang G, Ma W, et al. Dalton Transactions, 2018, 47(32), 11176. 40 Hussain I, Iqbal S, Hussain T, et al. Materials Today Physics, 2022, 23, 100655. 41 Khalafallah D, Miao J, Zhi M, et al. Journal of the Taiwan Institute of Chemical Engineers, 2021, 122, 168. 42 Garakani M A, Abouali S, Xu Z L, et al. Journal of Materials Chemistry A, 2017, 5(7), 3547. 43 Lai F, Miao Y E, Zuo L, et al. Small, 2016, 12(24), 3235. 44 Su X L, Chen J R, Zheng G P, et al. Applied Surfance Science, 2018, 436, 327. 45 Li S, Duan Y, Teng Y, et al. Applied Surface Science, 2019, 478, 247. 46 Zhu F F, Liu Y, Yan M, et al. Journal of Colloid & Interface Science, 2017, 512, 419.