Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22110033-7    https://doi.org/10.11896/cldb.22110033
  无机非金属及其复合材料 |
高比电容MOF衍生的介孔球状Co3O4/NiO/CuO
高雅倩1, 赵亚娟1, 谢会东1,*, 胡昌宇1, 王逸博1, 王康康1, 杨厂2
1 西安建筑科技大学化学与化工学院,西安 710055
2 西安建筑科技大学工程综合实训中心,西安 710055
Mesoporous Spherical Co3O4/NiO/CuO Derived from MOF with High Specific Capacitance
GAO Yaqian1, ZHAO Yajuan1, XIE Huidong1,*, HU Changyu1, WANG Yibo1, WANG Kangkang1, YANG Chang2
1 School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Engineering Comprehensive Training Center, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 19556KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过溶剂热合成了CoNiCu-MOF金属有机框架化合物,并通过后续的煅烧制备了Co3O4/NiO/CuO电极材料。对材料的形貌和比表面积进行表征,并测量了材料在不同扫描速率下的循环伏安曲线和不同电流密度下的恒流充放电曲线以及循环稳定性。将所得材料作为正极,活性炭作为负极组装了超级电容器器件,测量了器件的电化学性能。结果表明:Co3O4/NiO/CuO材料具有多孔结构和较大的可用比表面积(50.24 m2·g-1)。当电流密度为1 A·g-1时,Co3O4/NiO/CuO的比电容高达3 682.2 F·g-1。所组装的Co3O4/NiO/CuO∥AC非对称超级电容器的能量密度在1.45 V的电势窗口内达到186.8 Wh·kg-1,功率密度高达7 249.8 W·kg-1。Co3O4/NiO/CuO是一种性能优良的超级电容器电极材料,具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高雅倩
赵亚娟
谢会东
胡昌宇
王逸博
王康康
杨厂
关键词:  超级电容器  金属有机框架  电化学  活性炭    
Abstract: CoNiCu-MOF metal-organic frames were synthesized by a solvothermal method, and the Co3O4/NiO/CuO electrode materials were prepared by a subsequent calcination of CoNiCu-MOF. The morphology, specific surface area, cyclic voltammetric curves at different scanning speeds, galvanostatic charge/discharge curves at different current densities, and the cyclic stability of the materials were measured. An asymmetric supercapacitor device was assembled with Co3O4/NiO/CuO and activated carbon as the positive and negative electrodes, respectively, and its electrochemical properties were measured. Results showed that the Co3O4/NiO/CuO material had a porous structure and a large specific surface area (50.24 m2·g-1). The specific capacitance of Co3O4/NiO/CuO was as high as 3 682.2 F·g-1 at a current density of 1 A·g-1. The maximum energy density of the assembled Co3O4/NiO/CuO∥AC asymmetric supercapacitor achieved up to 186.8 Wh·kg-1 within a potential window of 1.45 V and a power density of 7 249.8 W·kg-1. The excellent performance of Co3O4/NiO/CuO as a supercapacitor electrode material makes it have a wide application prospect as energy storage devices.
Key words:  supercapacitor    metal-organic frame    electrochemistry    activated carbon
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  O614  
基金资助: 山东省重大科技创新项目(2019JZZY010343)
通讯作者:  *谢会东,西安建筑科技大学化学与化工学院教授。1996年7月清华大学化学系物理化学专业本科毕业,2007年7月清华大学化学系化学专业博士毕业到西安建筑科技大学工作至今,目前从事化学与材料方面的研究工作,发表论文100余篇,包括Adv.Funct.Mater.、J.Eur.Ceram.Soc.、Appl.Surf.Sci.、《无机材料学报》等。xiehuidong@tsinghua.org.cn   
作者简介:  高雅倩,2022年7月在榆林学院获得工学学士学位,现为西安建筑科技大学化学与化工学院硕士研究生,在谢会东教授和赵亚娟副教授的指导下进行研究,目前主要的研究领域为超级电容器。
引用本文:    
高雅倩, 赵亚娟, 谢会东, 胡昌宇, 王逸博, 王康康, 杨厂. 高比电容MOF衍生的介孔球状Co3O4/NiO/CuO[J]. 材料导报, 2024, 38(12): 22110033-7.
GAO Yaqian, ZHAO Yajuan, XIE Huidong, HU Changyu, WANG Yibo, WANG Kangkang, YANG Chang. Mesoporous Spherical Co3O4/NiO/CuO Derived from MOF with High Specific Capacitance. Materials Reports, 2024, 38(12): 22110033-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110033  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22110033
1 Khan I, Baig N, Ali S, et al. Energy Storage Materials, 2021, 35, 443.
2 Wu Z P, Lu X F, Zang S Q, et al. Advanced Functional Materials, 2020, 30(15), 1910274.
3 Chen S H, Qiu L, Cheng H M. Chemical Reviews, 2020, 120(5), 2811.
4 Chen J X, Zhu R J, Sheng N, et al. Journal of Chemical Industry and Engineering, 2022, 73(9), 4194 (in Chinese).
陈健鑫, 朱瑞杰, 盛楠, 等. 化工学报, 2022, 73(9), 4194.
5 Dou Q, Park H S. Energy & Environmental Materials, 2020, 3(3), 286.
6 Choudhary N, Li C, Moore J, et al. Advanced Materials, 2017, 29(21), 1605336.
7 Liu Y, Li G, Guo Y, et al. ACS Applied Materials & Interfaces, 2017, 9(16), 14043.
8 Raza W, Ali F, Raza N, et al. Nano Energy, 2018, 52, 441.
9 Wang Y G, Song Y F, Xia Y Y. Chemical Society Reviews, 2016, 45, 5925.
10 Ren J W, Wang Y, Cai W F. Chemical Industry and Engineering, 2022, 39(5), 78 (in Chinese).
任建伟, 王燕, 蔡旺锋. 化学工业与工程, 2022, 39(5), 78.
11 Chen X, Paul R, Dai L. National Science Review, 2017, 4(3), 453.
12 Hosaka T, Kubota K, Hameed A S, et al. Chemical Reviews, 2020, 120(14), 6358.
13 Zuo W H, Li R Z, Zhou C, et al. Advanced Science, 2017, 4(7), 1600539.
14 Zhou Y, Mao Z, Wang W, et al. ACS Applied Materials & Interfaces, 2016, 8(42), 28904.
15 Cheng J Y, Chen S M, Chen D, et al. Journal of Materials Chemistry A, 2018, 6(41), 20254.
16 Silva P, Vilela S M F, Tome J P C, et al. Chemical Society Reviews, 2015, 44, 6774.
17 Xia W, Mahmood A, Zou R, et al. Energy & Environmental Science, 2015, 8, 1837.
18 Sun L, Hendon C H, Minier M A, et al. Journal of the American Chemical Society, 2015, 137(19), 6164.
19 Wang L, Han Y, Feng X, et al. Coordination Chemistry Reviews, 2016, 307, 361.
20 Hong D H, Shim H S, Ha J, et al. Bulletin of the Korean Chemical So-ciety, 2021, 42(7), 956.
21 Xiao Y, Guo X, Yang N, et al. Journal of Energy Chemistry, 2021, 58, 508.
22 Han Y, Zhao M, Dong L, et al. Journal of Materials Chemistry A, 2015, 3(45), 22542.
23 Li S, Duan Y, Teng Y, et al. Applied Surface Science, 2019, 478, 247.
24 Bigdeli H, Moradi M, Hajati S, et al. Physica E-Low-Dimensional Systems & Nanostructures, 2017, 94, 158.
25 Salunkhe R R, Tang J, Kamachi Y, et al. ACS Nano, 2015, 9(6), 6288.
26 Zheng J H, Zhang R M, Wang X G, et al. Research on Chemical Intermediates, 2018, 44(9), 5569.
27 Liu Y, Cao X, Jiang D, et al. Journal of Materials Chemistry A, 2018, 6(22), 10474.
28 Mustaqeem M, Naikoo G A, Rahimi F, et al. Journal of Energy Storage, 2022, 51, 104330.
29 Wang G, Huang J, Chen S, et al. Journal of Power Sources, 2011, 196(13), 5756.
30 Veeman S, Karuppuchamy S. Ceramics International, 2022, 48(18), 26806.
31 Zhang Y X, Kuang M, Wang J J. CrystEngComm, 2014, 16, 4892.
32 Fang Z, Rehman S U, Sun M, et al. Journal of Materials Chemistry A, 2018, 6(42), 21131.
33 Vijayakumar S, Nagamuthu S, Muralidharan G. ACS Sustainable Chemistry & Engineering, 2013, 1(9), 1110.
34 Yan L, Niu L, Shen C, et al. Electrochimica Acta, 2019, 306, 529.
35 Guan C, Zhao W, Hu Y, et al. Nanoscale Horizons, 2017, 2(2), 99.
36 Jana S, Mondal A, Ghosh A. Applied Catalysis B-Environmental, 2018, 232, 26.
37 Mohamed S G, Hussain I, Sayed M S, et al. Journal of Alloys and Compounds, 2020, 842, 155639.
38 Wang Y, Liu Y, Wang H, et al. ACS Applied Energy Materials, 2019, 2(3), 2063.
39 Zhang Y, Wang G, Ma W, et al. Dalton Transactions, 2018, 47(32), 11176.
40 Hussain I, Iqbal S, Hussain T, et al. Materials Today Physics, 2022, 23, 100655.
41 Khalafallah D, Miao J, Zhi M, et al. Journal of the Taiwan Institute of Chemical Engineers, 2021, 122, 168.
42 Garakani M A, Abouali S, Xu Z L, et al. Journal of Materials Chemistry A, 2017, 5(7), 3547.
43 Lai F, Miao Y E, Zuo L, et al. Small, 2016, 12(24), 3235.
44 Su X L, Chen J R, Zheng G P, et al. Applied Surfance Science, 2018, 436, 327.
45 Li S, Duan Y, Teng Y, et al. Applied Surface Science, 2019, 478, 247.
46 Zhu F F, Liu Y, Yan M, et al. Journal of Colloid & Interface Science, 2017, 512, 419.
[1] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[2] 张佳倩, 王坤俊, 杨超, 杨颂, 上官炬, 王冰凝, 刘守军. 浸渍活性炭吸附放射性碘甲烷后失活机理研究[J]. 材料导报, 2024, 38(7): 22090123-5.
[3] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[4] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[5] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[6] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[7] 王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
[8] 郭贺, 焦进超, 张津, 王旭东, 连勇, 冯波, 冯晓伟, 郑开宏, 丁啸云, 韩东. 不同铝合金对Al/Mg/Al层状复合材料腐蚀行为的影响[J]. 材料导报, 2024, 38(12): 22090163-8.
[9] 梁咏宁, 刘务东, 赵凯, 季韬. 加速碳化条件下不同养护制度对碱矿渣混凝土钢筋锈蚀的影响[J]. 材料导报, 2024, 38(11): 22090297-8.
[10] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[11] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[12] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[13] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[14] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[15] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed