Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21080035-6    https://doi.org/10.11896/cldb.21080035
  无机非金属及其复合材料 |
改性PbO2电极电化学催化裂解的稳定性研究
刘继成1, 杨仁凯1,2,*, 陈贵生3, 孙思3, 韩晓宇3, 田洁3, 李晓林4,*
1 重庆水务集团股份有限公司,重庆 400015
2 重庆大学化学化工学院,重庆 401331
3 重庆市三峡水务有限责任公司,重庆 401122
4 西南大学化学化工学院,重庆 400715
Enhanced Stability of the Modified PbO2 Electrode for Electrochemical Catalysis
LIU Jicheng1, YANG Renkai1,2,*, CHEN Guisheng3, SUN Si3, HAN Xiaoyu3, TIAN Jie3, LI Xiaolin4,*
1 Chongqing Water Group Co., Ltd., Chongqing 400015, China
2 College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
3 Chongqing Three Gorges Water Service Co., Ltd., Chongqing 401122, China
4 College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
下载:  全 文 ( PDF ) ( 5919KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,国内外污水处理工艺主要以厌氧-缺氧-好氧(A2/O)处理工艺为主,A2/O工艺是一种典型的除磷脱氮工艺,特点是厌氧、缺氧和好氧三段功能明确,界线分明,可根据进水条件和出水要求,人为地创造和控制三段的时空比例和运转条件,只要碳源充足,便可根据需要达到比较高的脱氮效率。然而,传统A2/O工艺存在以下两个缺点:①由于厌氧区居前,回流污泥中的硝酸盐对厌氧区产生不利影响;②由于缺氧区位于系统中部,反硝化在碳源分配上居于不利地位,影响了系统的脱氮效果。而当发生偷排、漏排等引起的水质冲击时,A2/O工艺很难在短时间内使水质达到排放要求。
电解法处理废水具有效率高、适应性强、无二次污染等特点,在处理有机废水方面优势明显。电化学氧化法是通过电极表面的电催化作用在电极上产生强氧化性物质使有机类化合物氧化降解。由产生强氧化性物质的途径和种类决定,该方法可分为直接和间接电化学氧化两类:①直接电化学氧化法通过在阳极表面产生金属过氧化物来实现有机类化合物的氧化降解。电极电解水生成羟基自由基(·OH),·OH与金属氧化物(MOx)结合,形成金属过氧化物。金属过氧化物在有机类化合物降解过程中能够抑制钝化层的形成,促进降解的进行。②间接电化学氧化法利用电化学反应过程中产生的氧化剂或短寿命中间物使污染物转化成无害物质。通过电化学氧化可以将H2O生成O3或者·OH,这种方法几乎没有污染,但是O3的生成效率强烈依赖于所用的阳极材料和臭氧反应器,在降解有机污染物时电流效率低,能耗大,因而较少直接应用于实际废水的处理中。
二氧化铅(PbO2)被认为是一种很有前途的阳极材料,对有机废水的电化学降解具有优异的活性。然而,由于和基底的结合能力较差,PbO2电极稳定性较差,溶解析出铅离子会对环境造成二次污染。在本工作中,为了提高PbO2电极的稳定性,在Ti/SnO2-Sb2O3/β-PbO2电极中沉积了10.0 μm的α-PbO2薄膜。α-PbO2层不仅可以增加SnO2-Sb2O3和β-PbO2层之间的晶格匹配程度,还可以减小两种不同薄膜之间的内应力。在添加α-PbO2薄膜后,Ti/SnO2-Sb2O3/α-PbO2/β-PbO2电极表现出的催化活性与Ti/SnO2-Sb2O3/β-PbO2电极相比并未降低,但稳定性大大提高。在甲苯二胺(TDA)的电化学氧化中,具有α-PbO2膜的修饰电极可以在2.0 A/cm2的电流密度和4.0 mol/L的H2SO4溶液中保持稳定长达750 min,使用寿命是Ti/SnO2-Sb2O3/β-PbO2电极的1.56倍。同时,本工作还详细研究了TDA的降解途径,报道了一种提高改性PbO2电极稳定性的简便方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘继成
杨仁凯
陈贵生
孙思
韩晓宇
田洁
李晓林
关键词:  电化学降解  改性PbO2电极  α-PbO2  稳定性  甲苯二胺    
Abstract: Lead dioxide (PbO2) has been regarded as a promising anodic material with superior activity for electrochemical degradation of the organic waste water. However, the PbO2 electrode usually suffers from poor stability and the leached lead ions can cause even more serious pollution to the environment. In this work, to enhance the stability of the PbO2 electrode, a 10.0 μm of α-PbO2 thin film is deposited into the Ti/SnO2-Sb2O3/β-PbO2 electrode. The α-PbO2 layer can not only increase the lattice matching between the SnO2-Sb2O3 and the β-PbO2 layer but also decrease the internal stress between two different films. With the addition of α-PbO2 thin film, the Ti/SnO2-Sb2O3/α-PbO2/β-PbO2 modified electrode shows almost the same electrocatalytic activity as the Ti/SnO2-Sb2O3/β-PbO2 electrode, but the stability is greatly improved. In the electrochemical oxidation of toluene diamine (TDA), the modified electrode with the α-PbO2 film could stay at a current density of 2.0 A/cm2 for as long as 750 min in a 4.0 mol/L H2SO4 solution, which was 1.56 times longer than that of the Ti/SnO2-Sb2O3/β-PbO2 electrode. The degradation pathway of TDA was also studied in detail. This work reports a facil and promising way to stabilize the modified PbO2 electrode for electrochemical degradation of organic pollutants.
Key words:  electrochemical degradation    modified PbO2 electrode    α-PbO2    stability    toluene diamine
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  O646.51  
基金资助: 国家自然科学基金(21675131)
引用本文:    
刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
LIU Jicheng, YANG Renkai, CHEN Guisheng, SUN Si, HAN Xiaoyu, TIAN Jie, LI Xiaolin. Enhanced Stability of the Modified PbO2 Electrode for Electrochemical Catalysis. Materials Reports, 2023, 37(8): 21080035-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080035  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21080035
1 Feng Y, Yang L, Liu J, et al. Environmental Science: Water Research & Technology, 2016, 2, 800.
2 Martínez-Huitle C A, Ferro S. Chemcal Society Review, 2006, 35, 1324.
3 Tran N, Drogui P, Doan T L, et al. Environmental Technology, 2017, 38, 2939.
4 Martínez-Huitle C A, Panizza M. Current Opinion in Electrochemistry, 2018, 11, 62.
5 Pei S, Teng J, Ren N, et al. Environmental Science & Technology, 2020, 54, 4573.
6 Ken D S, Sinha A. Journal of Environmental Chemical Engineering, 2021, 9,105025.
7 Yu Q, Zhang Y, Tang M, et al. Journal of Water Process Engineering, 2023, 53, 103603.
8 Murugaesan P, Aravind P, Guruswamy Muniyandi N, et al. Environmental Technology, 2015, 36, 2618.
9 Li X, Li X, Tang S, et al. Applied Surface Science, 2014, 311, 357.
10 Li X, Xu H, Yan W. Applied Surface Science, 2016, 389, 278.
11 Oliveira K S G C, Farinos R M, Veroli A B, et al. Environmental Technology, 2021, 42, 170.
12 Lin Y P, Valentine R L. Environmental Science & Technology, 2009, 43, 3872.
13 Li X, Wang Z, Liang H, et al. Environmental Technology, 2019,40, 112.
14 Zheng Z, Yu Q, Chen Z, et al. Journal of Electroanalytical Chemistry, 2020, 878, 114699.
15 Zhang Q, Guo X, Cao X, et al. Chinese Journal of Catalysis, 2015,36, 975.
16 Zhang W, Kong H, Lin H, et al. Journal of Alloys and Compounds, 2015, 650, 705.
17 Wu J, Xu H, Yan W. RSC Advance, 2015, 5, 19284.
18 Elnaggar M Y, Fathy E S, Hassan M M. Environmental Technology, 2019, 40, 3054.
19 Hu G, Xu R D, He S W, et al. Transactions of Nonferrous Metals Society of China, 2015, 25, 2095.
20 Ansari A, Nematollahi D. Applied Catalysis B: Environmental, 2020, 261, 118226.
21 Kötz E R, Stucki S. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 228, 407.
22 An H, Li Q, Tao D, et al. Applied Surface Science, 2011, 258, 218.
23 Xu K, Peng J, Chen P, et al. Processes, 2019, 7, 762.
24 Li J, Zheng L, Li L, et al. Electroanalysis, 2006, 18, 2251.
25 Mo H, Tang Y, Wang N, et al. Journal of Solid State Electrochemistry, 2016, 20, 2179.
26 Hyde M E, Jacobs R M J, Compton R G. The Journal of Physical Chemistry B, 2004, 108, 6381.
27 Li X, Li X, Yang W, et al. Electrochimica Acta, 2014, 146, 15.
28 Sun X, Xu D, Dai P, et al. Chemical Engineering Journal, 2020, 402, 125881.
29 Brillas E, Sirés I, Oturan M A. Chemcal Society Review, 2009, 109, 6570.
30 He H Q, Zhou Z. Critical Reviews in Environmental Science and Techno-logy, 2017, 47, 2100.
[1] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[2] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[3] 杨春利, 黄江龙, 杜晶, 陈喜, 张浩, 王靖. In、Ta共掺杂Ni-BaCeO3基氢分离膜[J]. 材料导报, 2023, 37(6): 21090258-8.
[4] 吕春艳, 刘杨, 张文君, 王晴. 基于硅气凝胶包载尼莫地平新型载药系统的构建及胃肠稳定性研究[J]. 材料导报, 2023, 37(6): 21030015-6.
[5] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[6] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[7] 乔及森, 杨元庄, 王磊, 高振云, 冯睿. 焊剂片约束电弧焊接三明治板熔滴过渡与熔池波动研究[J]. 材料导报, 2023, 37(2): 21050032-8.
[8] 聂真, 褚万立, 聂伟志, 陈煜. 含碘敷料的研究进展与应用现状[J]. 材料导报, 2023, 37(2): 20090021-7.
[9] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[10] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[11] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[12] 杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
[13] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[14] 范海峰, 郭志光. 仿生超滑表面的设计与制备研究进展[J]. 材料导报, 2022, 36(7): 21110226-21.
[15] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed