Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21030164-8    https://doi.org/10.11896/cldb.21030164
  无机非金属及其复合材料 |
SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究
杨智勇1,*, 臧家俊1, 韩超2, 李卫京1, 李志强1
1 北京交通大学机械与电子控制工程学院,北京 100044
2 中国铁道科学研究院机车车辆研究所,北京 100081
Study on Friction Stability of Friction Pair Consisting of SiCp/A356 MAO Coating and Synthetic Material
YANG Zhiyong1,*, ZANG Jiajun1, HAN Chao2, LI Weijing1, LI Zhiqiang1
1 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
2 Locomotive & Car Research Institute, China Academic of Railway Sciences, Beijing 100081, China
下载:  全 文 ( PDF ) ( 7534KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究SiCp/A356材料微弧氧化(MAO)膜与合成材料摩擦副在制动温升和干湿摩擦条件下的膜层稳定性及摩擦特性,为解决SiCp/A356材料制动盘表面划伤问题及提高SiCp/A356材料制动盘与合成材料闸片在潮湿工况下的制动可靠性提供技术支撑和理论依据。通过SiCp/A356材料MAO膜的热震试验,研究了膜厚对膜层稳定性的影响,采用盘环摩擦试验,研究了SiCp/A356材料MAO膜与合成材料摩擦副在干燥和潮湿工况下的摩擦稳定性及磨损机理。随着MAO膜厚度的增加,膜层热震性能变差,升高热震温度会缩短膜层寿命,40 μm厚的MAO膜在正常制动服役温升下具有良好的热震性能。在干燥工况下,MAO膜提高了SiCp/A356材料与合成材料摩擦副间的摩擦稳定性,MAO膜与合成材料的摩擦最终演变成第三体与合成材料的摩擦,并伴有第三体的粘着磨损与轻微磨粒磨损。在潮湿工况下,MAO膜可显著提高SiCp/A356材料与合成材料摩擦副间的摩擦系数(>0.3)和摩擦稳定性,MAO膜与合成材料间主要发生两体摩擦,合成材料磨损以磨粒磨损为主,MAO膜可有效保护SiCp/A356材料基体。MAO膜用于SiCp/A356材料与合成材料摩擦副具有较好的膜层稳定性并能改善摩擦副在潮湿工况下的摩擦性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨智勇
臧家俊
韩超
李卫京
李志强
关键词:  SiCp/A356材料  MAO膜  热震  摩擦稳定性  磨损机理    
Abstract: The coating stability and friction characteristics of friction pair consisting of SiCp/A356 micro-arc oxidation(MAO) coating and synthetic mate-rial under braking temperature and wet and dry friction conditions were studied, providing technical support and theoretical basis for solving the problem of scratches on the surface of SiCp/A356 material brake discs and improving braking reliability of the SiCp/A356 material brake discs and synthetic brake pads under wet conditions. In this paper, the influence of coating thickness on the stability of the MAO coating was studied through thermal shock test, while friction stability and friction mechanism of friction pair consisting of SiCp/A356 MAO coating and synthetic material were studied through disc-ring friction tests under dry and wet working conditions, respectively. With the increase of MAO coating thickness, the thermal shock performance of the MAO coating became worse, and the increase of thermal shock temperature reduced the life of the MAO coating. The MAO coating with 40 μm thickness had a good thermal shock performance under normal braking service temperature. The MAO coating improved the friction stability between SiCp/A356 material and synthetic material under dry conditions, and the friction mechanism in the friction pair was essentially the friction behavior between third body layer and synthetic material, accompanied by the adhesive wear of third body layer and slight abrasive wear. In wet conditions, MAO coating significantly improved the friction coefficient (>0.3) and maintain the friction stability between SiCp/A356 material and synthetic material, and two-body abrasive wear behavior occurred; the synthetic material was severely worn while MAO coating effectively protected the SiCp/A356 material. MAO coating used in friction pair consisting of SiCp/A356 material and synthetic material has a good coating stability and it can improve the material friction performance under wet conditions.
Key words:  SiCp/A356 material    micro-arc oxidation (MAO) coating    thermal shock    friction stability    wear mechanism
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TB331  
  TG174.4  
基金资助: 中央高校基本科研业务费专项(重点项目)(2020JBZ113)
通讯作者:  zhyyang@bjtu.edu.cn   
作者简介:  杨智勇,北京交通大学机械与电子控制工程学院教授、博士研究生导师。2008年毕业于北京交通大学,获车辆工程工学博士学位并留校工作至今。主要研究方向有:围绕轨道车辆结构可靠性领域,金属改性和表面处理技术、零件结构与工艺协同仿真。在国内外重要期刊发表文章60多篇,申报发明专利10余项。
引用本文:    
杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
YANG Zhiyong, ZANG Jiajun, HAN Chao, LI Weijing, LI Zhiqiang. Study on Friction Stability of Friction Pair Consisting of SiCp/A356 MAO Coating and Synthetic Material. Materials Reports, 2022, 36(9): 21030164-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030164  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21030164
1 Pan L K, Han J M, Yang Z Y, et al. Advances in Materials Science and Engineering, 2017, 1,1.
2 Jin Y X, Wang X Y, Tong Q Q, et al. Rare Metal Materials and Engineering, 2017, 43(10), 2497.
3 Sun M L, Wang X Y, Xie C S. Rare Metal Materials and Engineering, 2016, 45(8), 2051.
4 Yang Z Y. Research on thermal damage and structure design of aluminum matrix composites brake disc for high-speed train. Ph.D. Thesis, Beijing Jiaotong University,China, 2008(in Chinese).
杨智勇. 高速客车铝基复合材料制动盘热损伤和结构设计研究. 博士学位论文, 北京交通大学, 2008.
5 Jin Y X, Lee J M, Kang S B. Rare Metal Materials and Engineering, 2008, 37(11), 1956(in Chinese).
金云学, Jung-Moo Lee, Suk-Bong Kang. 稀有金属材料与工程, 2008, 37(11), 1956.
6 Li Y L, Sun L, Cao L X, et al. Materials Reports, 2020, 34(Z1), 361(in Chinese).
李亚林, 孙垒, 曹柳絮, 等. 材料导报, 2020, 34(Z1), 361.
7 Pan L K. Research on friction brake behavior and failure mechanism of aluminum matrix composite. Ph.D. Thesis, Beijing Jiaotong University, China, 2017(in Chinese).
潘利科. 铝基复合材料摩擦制动服役特性及失效机制研究. 博士学位论文, 北京交通大学, 2017.
8 Chen S J, Wang D X, Qin J Y, et al. Railway Locomotive & Car, 2014, 34(4), 14(in Chinese).
陈澍军, 王东星, 秦佳颖, 等. 铁道机车车辆, 2014, 34(4), 14.
9 Qian K C, Wu S Z, Qiao Q F, et al. Journal of Southwes Jiaotong University, 2017, 52(6), 1188(in Chinese).
钱坤才, 吴射章, 乔青锋, 等. 西南交通大学学报, 2017, 52(6), 1188.
10 Wang D X, Qin J Y, Zhang D D, et al. Railway Locomotive & Car, 2017, 37(5), 34(in Chinese).
王东星, 秦佳颖, 张冬冬, 等. 铁道机车车辆, 2017, 37(5), 34.
11 Erarslan Y. Transactions of Nonferrous Metals Society of China, 2013, 23(2), 347.
12 Lee J M, Kang S B, Han J M. Solid State Phenomena, 2007, 124-126, 1409.
13 Tang S G, Chen Q Z, Li S B, et al. Surface Technology, 2016, 45(11), 23(in Chinese).
唐仕光, 陈泉志, 李少波, 等. 表面技术, 2016, 45(11), 23.
14 Luo J M, Wu X H, Xu J L. Journal of Inorganic Materials, 2017, 32(4), 418(in Chinese).
罗军明, 吴小红, 徐吉林. 无机材料学报,2017,32(4),428.
15 Tian H, Xue W B, Li X J, et al. Journal of the Chinese Ceramic Society, 2008, 36(5), 636(in Chinese).
田华, 薛文斌, 李夕金, 等. 硅酸盐学报, 2008, 36(5), 636.
16 Du C Y, Huang S T, Yu X L, et al. Acta Materiae Compositae Sinica, 2020, 37(8), 1960(in Chinese).
杜春燕, 黄树涛, 于晓琳, 等. 复合材料学报,2020,37(8),1960.
17 Xia L Q, Han J M, Cui S H, et al. Journal of Materials Engineering, 2016, 44(1), 40(in Chinese).
夏伶勤, 韩建民, 崔世海, 等. 材料工程, 2016, 44(1), 40.
18 Lee J M, Kang S B, Han J M. Wear, 2008, 264(1-2), 75.
19 Zhang Y, Xue W B, Jiang X L, et al. Transactions of Materials and Heat Treatment, 2008, 29(3), 134(in Chinese).
张盈, 薛文斌, 蒋兴莉, 等. 材料热处理学报, 2008, 29(3), 134.
20 Fan Z G. Study on the high temperature behavior and thermal shock resistance of the MAO film on the AZ91D alloy. Master's Thesis, Chang'an University, China, 2015(in Chinese).
樊正国. AZ91D镁合金微弧氧化膜层高温氧化行为及抗热震性研究. 硕士学位论文, 长安大学, 2015.
21 Zhong Y S, Shi L P, Li M W, et al. Applied Surface Science, 2014, 311, 158.
22 Yao Z P, Gao H H, Jiang Z H, et al. Journal of the American Ceramic Society, 2008, 91(2), 555.
23 Sheng D J, Wang Y L, Nash P, et al. Journal of Materials Processing Technology, 2008, 205(1-3), 477.
24 Zhong Y S. Study on the micro-arc oxidation composite ceramic coating on TC4 surface and its thermal-induced failure behavior. Ph.D. Thesis, Harbing Institute of Technology, China, 2011(in Chinese).
钟业盛. TC4表面微弧氧化复合陶瓷涂层及其热致失效行为研究. 博士学位论文, 哈尔滨工业大学, 2011.
25 Ma Y, Zhang H F, Hao Y, et al. Chinese Journal of Materials Research, 2009, 23(6), 656(in Chinese).
马颖, 张洪锋, 郝远, 等. 材料研究学报, 2009, 23(6), 656.
26 Liang X B, Sheng X F, Li X G, et al. Chinese Journal of Rare Metals, 2019, 43(7), 679(in Chinese).
梁锡炳, 盛晓方, 李兴刚, 等. 稀有金属, 2019, 43(7), 679.
27 Wang J L. Research on the evolution behavior of third-body layer on the surface of SiCp/A356 composites under servise enviroment. Master's Thesis, Beijing Jiaotong University, China, 2018(in Chinese).
王佳琳. 服役环境下SiCp/A356复合材料摩擦第三体演变行为研究. 硕士学位论文, 北京交通大学, 2018.
28 Bhushan B. Tribology Letters, 1998, 4(1), 1.
29 Yang Z Y, Wang Z M, Wang J L, et al. Journal of Materials Enginee-ring and Performance, 2021, 30(6), 4148.
[1] 宋晓毓, 王德志, 吴壮志, 段柏华, 毕海莲, 刘新利. 爆炸焊接Nb/Q345R层状复合材料的热震性能研究[J]. 材料导报, 2021, 35(18): 18131-18135.
[2] 常垲硕, 郑光明, 李阳, 程祥, 刘焕宝, 赵光喜. 湿式微喷砂处理对切削TC4的涂层刀具表面完整性及切削性能影响[J]. 材料导报, 2021, 35(16): 16086-16092.
[3] 陈勇强,李红霞,刘国齐. 层状陶瓷及层状耐火材料研究进展[J]. 材料导报, 2019, 33(17): 2847-2853.
[4] 惠阳, 刘贵民, 闫涛, 杜林飞, 周雳. 载流摩擦磨损研究现状及展望[J]. 材料导报, 2019, 33(13): 2272-2280.
[5] 高丽华, 冀晓鹃, 侯伟骜, 卢晓亮, 章德铭. 等离子物理气相沉积准柱状结构YSZ涂层的制备及抗热震性能[J]. 材料导报, 2019, 33(12): 1963-1968.
[6] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[7] 赵义鹏, 梁医, 冯虎田, 张立民, 徐斌. 滚动直线导轨副磨损特性和磨损机理试验研究[J]. 材料导报, 2018, 32(6): 915-923.
[8] 张世堂, 赵海朝, 乔玉林. 少层石墨烯负载纳米SiO2复合材料对水润滑性能的影响[J]. 材料导报, 2018, 32(24): 4235-4239.
[9] 韩志勇, 丘珍珍, 史文新. 强流脉冲电子束粘结层表面改性对热障涂层热震及残余应力的影响[J]. 材料导报, 2018, 32(24): 4303-4308.
[10] 解惠贞,孙建涛,何轩宇,薛朋飞,秦淑颖. 密度对C/C复合材料热力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 268-271.
[11] 李延军, 刘冬华, 张电, 马昱昭. 含h-BN复相陶瓷制备及性能研究进展[J]. 材料导报, 2018, 32(15): 2609-2617.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed