Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2847-2853    https://doi.org/10.11896/cldb.18100092
  材料与可持续发展(二)—材料绿色制造与加工* |
层状陶瓷及层状耐火材料研究进展
陈勇强1,李红霞1,2,刘国齐2
1 郑州大学材料科学与工程学院,郑州 450001
2 中钢集团洛阳耐火材料研究院有限公司,洛阳 471039
Research Progress of Layered Ceramics and Layered Refractories
CHEN Yongqiang1, LI Hongxia1,2, LIU Guoqi2
1 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001
2 Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039
下载:  全 文 ( PDF ) ( 20474KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 现代工业技术的发展对钢铁强度、韧性、加工性能的要求日趋严格,尤其是作为优良结构材料的钢铁制品正逐步实现功能化;耐火材料是冶金高温工业重要的支撑材料,对优质钢冶炼的效率和质量至关重要,其正逐步向高效化、优质化、功能化、绿色化的方向发展。耐火材料的导热性、抗侵蚀、抗热震、抗冲刷磨损等基本特性相互影响,传统的耐火材料制备工艺无法保证耐火制品的各项性能达到最优。低热导的耐火材料可以防止钢水温度极速下降,缸内热量散失过快,进而降低能耗;但低热导耐火材料高温区与低温区的热应力差异较大,两部分区域之间产生的剪切应力容易导致耐火材料开裂损毁。高热导的耐火材料可以缓解温差应力对耐火制品的破坏,耐火材料热面温度降低还可以形成渣皮附着物,从而保护耐火制品,同时碱金属的化学侵蚀速率将明显降低。尤其是传统的含碳耐火材料,虽然碳组分提高了耐火材料的抗热震性,但在高温冶炼作用下,碳发生氧化使耐火材料中形成多孔结构,降低了材料的强度,导致材料易被熔渣侵蚀和渗透,也影响了钢中碳元素的含量。
   研究人员主要通过改善耐火材料组分与结构,添加或原位生成陶瓷保护相等方式优化耐火材料的性能,但优化效果仍旧单一,始终达不到结构与功能的良好统一。因此开发抗热震、抗侵蚀、无污染等良好匹配的结构功能一体化新型耐火材料十分必要。层状复合材料作为一种仿生设计,其精细的结构保证了材料优良的综合性能。尽管层状复合材料的制备方法较多,但均不免存在一些技术限制。粉体压层和顺序浇铸技术无法保证界面或界面层的均匀性,层间界面设计受限;离心沉积和电泳沉积技术对原料特性的依赖程度较高,不利于耐火材料结构设计。 3D 打印虽然获得广泛关注,但对设备尤其是原材料快速成型性要求较高,对陶瓷材料而言有颇多不足。相比之下,流延成型工艺操作灵活、原料适应性强、坯体便于后期加工和处理。因此,层状陶瓷及耐火材料相关研究多以此为基础。
   本文综述了层状陶瓷复合材料的制备工艺,以及不同制备方式和层状结构对其抗折强度、断裂韧性的影响规律;介绍了层状结构在耐火材料研究中的应用及其对耐火材料抗热震、抗侵蚀性能的影响;提出了层状耐火材料制备过程中的关键问题和今后的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈勇强
李红霞
刘国齐
关键词:  陶瓷及耐火材料  多层结构  流延成型  抗热震  结构功能一体化    
Abstract: The development of modern industrial technology has put forward to higher requirementson steel strength, toughness and processing perfor-mance for steel materials. In particular, iron and steel products gradually realize functionalization as excellent structural materials. Refractories are important supporting materials for high-temperature metallurgical industry, especially for the efficiency and quality of high quality steel smelting. The basic properties of refractories, such as thermal conductivity, corrosion resistance, thermal shock resistance and erosion wear resistance, are interacted with each other. The traditional preparation process of refractories can't realize the best performance of each property for refractory products. The low thermal conductivity refractories can prevent decreasing rapidly of the molten steel temperature, thus, reducing heat loss, so as to reduce energy consumption. However, the thermal stress in the high-temperature zone and the low-temperature zone is quite diffe-rent, and the shear stress between the two zones can easily lead to the cracking and damage of the refractory. The high thermal conductivity refractories can alleviate the damage of temperature difference stress to refractory products. The temperature reduction of thermal surface of refractory materials can also form slag-skin attachments to protect refractory products. Meanwhile, the chemical erosion rate of alkali metals will be significantly reduced. Especially for traditional carbon-containing refractories, although the presence of carbon components improves the thermal shock resistance of the refractories, the oxidation of carbon in high-temperature smelting leads to the formation of porous structure in the refractories reducing the strength of the material. Then, the refractories are eroded and permeated by molten slag effecting the content of carbon in steel.
The researchers mainly optimized the performance of refractories by improving the composition and structure of refractories and adding or in situ generating ceramic protection phase. However, the optimization effect is still single, which can't achieve good unity of structure and function.Therefore, it is necessary to develop new type refractories with well-matched of structure and function, such as thermal shock resistance, anti-erosion and non-pollution. As a kind of bionic design, the fine structure of laminated composites ensures its excellent comprehensive perfor-mance.Although there are many methods to prepare laminated composites, there are some technical limitations. The technology of powder compaction and sequential casting cannot guarantee the uniformity of interface or interface layer, and the design of interlayer interface is limited. Centrifugal deposition and electrophoretic deposition are highly dependent on the characteristics of raw materials, which is not conducive to the structural design of refractories. Although 3D printing has been widely concerned, it has high requirements for equipment, especially for rapid prototyping of raw materials, and it has a lot shortcomings for ceramic materials. By contrast, the tape casting has flexible operation, good adaptable for raw material and convenient post processing for green tapes. Therefore, the researches on layered ceramics and refractories are often based on this.
This paper reviews the preparation technology of layered ceramic composites and the influence of different preparation methods and layered structures on their fracture strength and fracture toughness. The application of layered structure in the study of refractories and its influence on the thermal shock resistance and corrosion resistance of refractories are introduced.The key problems and the future development direction of layered refractories are proposed.
Key words:  ceramics and refractories    multilayered structure    tape casting    thermal shock resistance    integration of structure and function
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  TM28  
基金资助: 国家自然科学基金(51772277;51372231);国家重点研发计划(2017YFB0304000)
作者简介:  陈勇强,毕业于郑州大学材料科学与工程学院,分别在2014年和2016年获得学士和硕士学位。目前,为郑州大学博士研究生。在李红霞教授的指导下,他在洛阳耐火材料研究院,先进耐火材料国家重点实验室从事博士课题研究。他的研究方向为氧化物耐火材料的结构功能一体化。
   刘国齐, 教授级高级工程师,硕士研究生导师, 1997 年毕业于河北理工大学无机非金属专业,获学士学位。 2000 年 6 月在中钢集团洛阳耐火材料研究院获硕士学位, 2006 年 5 月在北京科技大学获材料学专业博士学位。主要从事梯度功能耐火材料、含碳耐火材料等方面的基础与应用研究。曾在国内外科技刊物上发表文章 50余篇,其中 EI 或 SCI 收录 20余篇,申请专利 25 项,获授权专利 20 项。
引用本文:    
陈勇强,李红霞,刘国齐. 层状陶瓷及层状耐火材料研究进展[J]. 材料导报, 2019, 33(17): 2847-2853.
CHEN Yongqiang, LI Hongxia, LIU Guoqi. Research Progress of Layered Ceramics and Layered Refractories. Materials Reports, 2019, 33(17): 2847-2853.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100092  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2847
1 Karambelas G, Santhanam S, Wing Z N. <i>Ceramics International</i>, 2013,39(2),1315.<br />
2 Wegst U G, Bai H, Saiz E, et al. <i>Nature Materials</i>, 2015, 14,23.<br />
3 Meyers M A, Chen P Y. <i>Science</i>, 2013 ,339(6121), 773.<br />
4 Bouville F, Maire E, Meille S,et al. <i>Nature Materials</i>, 2014 ,13(5),508.<br />
5 Liu Z, Liu M, NieL, et al.<i>International Journal of Hydrogen Energy</i>, 2013, 38(2), 1082.<br />
6 Largiller G, Bouvard D, Carry C P, et al.<i>Mechanics of Materials</i>, 2012 ,53, 123.<br />
7 Schaff ner S, Freitag L, Hubálková J, et al. <i>Journal of the European Ceramic Society</i>, 2016,36(8), 2109.<br />
8 Chang J C, Velamakanni B V, Lange F F, et al.<i>Journal of the American Ceramic Society</i>, 1991 ,74(9),2201.<br />
9 Chumanov I V, Anikeev A N, Chumanov V I.<i>Procedia Engineering</i>, 2015 ,129, 816.<br />
10 Ferrari B,Sánchez-Herencia A J,Moreno R. <i>Materials Letters</i>, 1998, 35(5-6),370.<br />
11 Scheithauer U, Bergner A, Schwarzer E, et al.<i>Journal of Materials Research</i>, 2014 ,29(17),1931.<br />
12 Moya J S, Sánchez-Herencia A J, Requena J, et al.<i>Materials Letters</i>, 1992 ,14(5-6), 333.<br />
13 Hadraba H, Drdlik D, Chlup Z, et al. <i>Journal of the European Ceramic Society</i>, 2013, 33(12), 2305.<br />
14 Moon R J, Bowman K P, Trumble K P, et al.<i>Acta Materialia</i>, 2001 ,49(6), 995.<br />
15 Yeo J G, Jung Y G, Choi S C.<i>Materials Letters</i>, 1998 ,37, 304.<br />
16 Zhang G J, Yue X M, Watanabe T. <i>Journal of the European Ceramic Society</i>, 1999 ,19(12), 2111.<br />
17 Roosen A.<i>Advances in Science and Technology,</i> 2006,45, 397.<br />
18 Balakrishnan J A, Krishnan B, Panicker R P N, et al.<i>Advances in Applied Ceramics</i>, 2013 ,106(3), 128.<br />
19 Bulatova R, Jabbari M, Kaiser A, et al. <i>Journal of the European Ceramic Society</i>, 2014, 34(16), 4285.<br />
20 Gurauskis J, Sánchez-Herencia A J.<i>Journal of the European Ceramic Society</i>, 2007, 27(2-3), 1389.<br />
21 Manu K, Sebastian M T. <i>Ceramics International</i>, 2016, 42(1),1210.<br />
22 Piwonski M A, Roosen A. <i>Journal of the European Ceramic Society</i>, 1999, 19(2), 263.<br />
23 Gurauskis J, Sanchez-Herencia A J, Baud N C.<i>Key Engineering Mate-rials</i>, 2007, 333, 219.<br />
24 G tschel I, Gutbrod B, Travitzky N, et al.<i>Advances in Applied Ceramics</i>, 2013,112(6), 358.<br />
25 Jurkow D, Roguszczak H, Golonka L.<i>Journal of the European Ceramic Society</i>, 2009, 29(4),703.<br />
26 Medri V, Pinasco P, Sanson A, et al.<i>International Journal of Applied Ceramic Technology</i>, 2012, 9(2), 349.<br />
27 Bermejo R, Torres Y, Sanchezherencia A, et al. Residual stresses. <i>Acta Materialia</i>, 2006 ,54(18), 4745.<br />
28 Kiefer T, Moon H, Lange F F.<i>Journal of the American Ceramic Society</i>, 2005, 88(10), 2855.<br />
29 Lugovy M, Orlovskaya N, Slyunyayev V, et al.<i>Composites Science & Technology</i>, 2002, 62(6), 819.<br />
30 Quinn G D, Melandri C, de Portu G, et al. <i>Journal of the American Ceramic Society</i>, 2013, 96(7), 2283.<br />
31 Salahi E, Esfahani H, Mobasherpour I, et al.<i>Ceramics International</i>, 2014, 40(2), 2717.<br />
32 Chang Y, Bermejo R, Messing G L, et al.<i>Journal of the American Cera-mic Society</i>, 2014, 97(11),3643.<br />
33 Lugovy M, Slyunyayev V, Subbotin V, et al.<i>Composites Science and Technology,</i> 2004,64(13-14), 1947.<br />
34 Parente P, Ortega Y, Savoini B, et al.<i>Journal of the European Ceramic Society</i>, 2012 ,32(16), 3989.<br />
35 Zhou P, Hu P, Zhang X, et al. <i>International Journal of Refractory Metals and Hard Materials</i>, 2015, 52,12.<br />
36 Wang C A, Yong H, Zan Q, et al.<i>Journal of the American Ceramic Society</i>, 2002, 85(10), 2457.<br />
37 Bermejo R, Danzer R.<i>Engineering Fracture Mechanics</i>, 2010, 77(11), 2126.<br />
38 Chang Y, Bermejo R, eveek O, et al. <i>Journal of the European Ceramic Society</i>, 2015, 35(2),631.<br />
39 Grigoriev O N,Karoteev A V, Maiboroda E N, et al.<i>Composites Part B: Engineering</i>, 2006, 37(6), 530.<br />
40 Hbaieb K, Mcmeeking R M, Lange F F.<i>International Journal of Solids and Structures</i>, 2007, 44(10), 3328.<br />
41 Kotoul M, Sevecek O, Vyslouzil T.<i>Theoretical and Applied Fracture Mechanics</i>, 2012, 61,40.<br />
42 Lugovy M,Slyunyayev V, Orlovskaya N, et al.<i>Acta Materialia</i>, 2005 ,53(2), 289.<br />
43 Robert M, Keith B, Kevin T, et al.<i>Journal of the American Ceramic Society</i>, 2010, 83(2), 445.<br />
44 Cui K, Li Y.<i>International Journal of Refractory Metals and Hard Mate-rials</i>, 2016, 54, 148.<br />
45 Vandeperre L J, Kristofferson A, Carlstrm E, et al.<i>Journal of the American Ceramic Society</i>, 2001, 84(1), 104.<br />
46 Wei C, Ye C.<i>International Journal of Refractory Metals and Hard Materials</i>, 2015, 51, 233.<br />
47 Shevchenko A V, Dudnik E V, Ruban A K, et al.<i>Powder Metallurgy & Metal Ceramics</i>, 2003, 42(3),145.<br />
48 Udupa G, Rao S S,Gangadharan K V.<i>Procedia Materials Science</i>, 2014, 5, 1291.<br />
49 Wang Q, Li Y, Sang S, et al.<i>Journal of Alloys & Compounds</i>, 2015, 645(5), 388.<br />
50 Chen J, Li N, Yan W.<i>Journal of the European Ceramic Society</i>, 2016 ,36(12),1505.<br />
51 Scheithauer U, Slawik T, Haderk K, et al. In:Proceedings of the Unified International Technical Conference on Refractories (UNITECR 2013). Victoria,BC, 2014, pp.267.<br />
52 Jakobsen D, Rauch H, Dudczig S, et al.<i>Journal of Materials Processing Technology</i>, 2016, 229, 623.<br />
53 Gtschel I, Hayashi Y, Kakimoto K I, et al. <i>International Journal of Applied Ceramic Technology</i>, 2012, 9(2), 329.<br />
54 Jakobsen D, Gtschel I, Roosen A. <i>Refractories Worldforum</i>, 2016,8(2),86.<br />
55 Jakobsen D, Hammerbacher R, Dudczig S, et al. <i>Journal of Ceramic Science & Technology</i>, 2014, 5(2), 137.<br />
56 Jakobsen D, Zhang W, Doynov N, et al. <i>Ceramics International</i>, 2016, 42(12), 13562.<br />
57 Geigenmüller A, Spindler H, Lenk K, et al.<i>Journal of Ceramic Science & Technology</i>, 2014, 5(2), 71.<br />
58 Hein J, Khatib O E, Kuna M, et al.<i>Journal of Ceramic Science & Technology</i>, 2016, 7(2),203.<br />
59 Pelissari P I B G B, Bouville F, et al.<i>Journal of the European Ceramic Society</i>, 2017,38(4), 2186.<br />
60 Naebe M, Shirvanimoghaddam K. <i>Applied Materials Today</i>, 2016, 5, 223.<br />
61 Scheithauer U, Schwarzer E, Michaelis A. <i>Refractories Worldforum</i>, 2016,8(2),95.<br />
62 Minatto F D, Milak P, Noni A D, et al.<i>Materials Science Forum</i>, 2015, 114(3), 393.
[1] 高丽华, 冀晓鹃, 侯伟骜, 卢晓亮, 章德铭. 等离子物理气相沉积准柱状结构YSZ涂层的制备及抗热震性能[J]. 材料导报, 2019, 33(12): 1963-1968.
[2] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[3] 解惠贞,孙建涛,何轩宇,薛朋飞,秦淑颖. 密度对C/C复合材料热力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 268-271.
[4] 李延军, 刘冬华, 张电, 马昱昭. 含h-BN复相陶瓷制备及性能研究进展[J]. 材料导报, 2018, 32(15): 2609-2617.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed