Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4235-4239    https://doi.org/10.11896/j.issn.1005-023X.2018.24.005
  无机非金属及其复合材料 |
少层石墨烯负载纳米SiO2复合材料对水润滑性能的影响
张世堂1, 赵海朝2, 乔玉林2
1 92228部队,北京 102442;
2 陆军装甲兵学院机械产品再制造国家工程中心,北京 100072
Effect of Less Graphene-based SiO2 Nanocomposite Materials on Water Lubricity Properties
ZHANG Shitang1, ZHAO Haichao2, QIAO Yulin2
1 Unit 92228 of PLA, Beijing 102442;
2 National Engineering Research Center for Mechanical Product Remanufacturing, Academy of Armored Force Engineering, Beijing 100072
下载:  全 文 ( PDF ) ( 3901KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用液相超声直接剥离法制备了少层石墨烯负载纳米SiO2复合材料,采用TEM对其形貌进行了表征,利用多功能往复摩擦磨损试验仪考察了少层石墨烯负载纳米SiO2复合材料对水润滑性能的影响。通过SEM、XPS分别分析了磨损表面的形貌、元素组成及典型元素的化学状态,初步探讨了石墨烯负载纳米SiO2复合材料在水中的润滑机理。结果表明:纳米SiO2均匀分布于少层石墨烯片层表面和层间;其作为水润滑添加剂具有良好的减摩抗磨性能,这主要是由于石墨烯负载纳米SiO2复合材料在磨损表面形成的摩擦化学反应膜与纳米SiO2的自修复效应发生协同作用,抑制了Fe的氧化,并填补和修复了磨损表面,使磨痕表面的摩擦磨损减轻。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张世堂
赵海朝
乔玉林
关键词:  石墨烯  二氧化硅  复合材料  润滑性能  磨损机理    
Abstract: Graphene-based with SiO2 nanocomposite materials were prepared by the melthod of liquid-phase ultrasonic exfoliation. Morphologies of nanocomposite materials were characterized by means of TEM. their tribological properties as a pure water additive were investigated using multi-functional reciprocating friction and wear tester. The morphology, elemental composition and chemical states of typical elements were analyzed by SEM and XPS. The lubrication mechanism of graphene-loaded with SiO2 nanocomposites in water was preliminarily discussed. The results showed that the nano SiO2 evenly distributed in the few layer graphene layer and surface layer; the nanocomposite materials as a pure water additive displayed good friction-reducing and antiwear perfor-mance. The prosperity was attributed to the synergistic effect of the self-repairing effect of nano SiO2 and friction chemical reaction film formed on the worn surface by graphene-loaded with SiO2 nanocomposite which inhibited oxidation of Fe and repaired the wear surface, that reduced friction and wear on the frictional surface.
Key words:  graphene    silicon dioxide    composite materials    lubrication performance    wear mechanism
                    发布日期:  2019-01-23
ZTFLH:  TQ174  
作者简介:  张世堂:男,1975年生,博士研究生,主要研究方向为液体润滑及材料保护 E-mail:zst759402@sina.com
引用本文:    
张世堂, 赵海朝, 乔玉林. 少层石墨烯负载纳米SiO2复合材料对水润滑性能的影响[J]. 材料导报, 2018, 32(24): 4235-4239.
ZHANG Shitang, ZHAO Haichao, QIAO Yulin. Effect of Less Graphene-based SiO2 Nanocomposite Materials on Water Lubricity Properties. Materials Reports, 2018, 32(24): 4235-4239.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.005  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4235
1 Gong F X, Gou L Q, Qian Y N. Status and development of water-soluble lubricating additives[J].Synthetic Lubricants,2005,32(4):29.
巩发洋,勾连全,钱亚宁.水溶性润滑添加剂的现状和发展[J].合成润滑材料,2005,32(4):29.
2 Wang J M, Li C S, Wang J H, et al. Synthesis and tribological pro-perties of a water-soluble lubricant additive[J].Lubrication Enginee-ring,2012,37(3):1.
王俊明,李春生,王建华,等.一种水溶性润滑添加剂的制备及其摩擦学性能研究[J].润滑与密封,2012,37(3):1.
3 Ma H C. The preparation of phosphotungstic (phosphomolybdic) acid ammonium ultrafine particles and their tribological performance in water[D].Kaifeng: Henan University,2013.
马会超.磷钨(钼)酸铵超细颗粒的制备及其水基摩擦学性能研究[D].开封:河南大学,2013.
4 Zhang B, Xu B S, Xu Y, et al. Research status of micro- and nano- materials in lubricating additive[J].Tribology,2011,31(2):194.
张博,徐滨士,许一,等.润滑剂中微纳米润滑材料的研究现状[J].摩擦学学报,2011,31(2):194.
5 Zhang J. Preparation of water-soluble lanthanum fluoride and lanthanum fluoride composite nanoparticles and investigation of their tribological behavior[D].Kaifeng:Henan University,2013.
张杰.水溶性三氟化镧及其复合纳米微粒的制备和摩擦学行为研究[D].开封:河南大学,2013.
6 Lin L Y, Kim D E, Kim W K. Friction and wear characteristics of multi/layer grapheme films investigated by atomic force microscopy[J].Surface & Coatings Technology,2011,205(20):4864.
7 Lee J H, Kim S H, Cho D H. Tribological properties of chemical vapordeposited grapheme coating layer[J].Metals Mater,2012,50(3):206.
8 Pu J B, Wang L P, Xue Q J. Progress of tribology of graphene and graphene-based composite lubricating materials[J].Tribology,2014,34(1):93.
蒲吉斌,王立平,薛群基.石墨烯摩擦学及石墨烯基复合润滑材料的研究进展[J].摩擦学学报,2014,34(1):93.
9 Song H J, Li N. Frictional behavior of oxide graphene nanosheets as water/ base lubricant additive[J].Applied Physics A,2011,105:827.
10 Li N. Preparation and tribological properties of graphene oxide nanocomposite[D].Zhenjiang: Jiangsu University,2013.
李娜.氧化石墨烯纳米复合材料的制备及其摩擦学性能研究[D].镇江:江苏大学,2013.
11 Liu Y H,Wang X K,Pan G S,et al. A comparative study between graphene oxide and diamond nanoparticles as water/based lubricating additives[J].Science China Technological Sciences,2013,56(1):152.
12 Cui Q S. Tribological properties of graphene and graphene oxide water dispersion system[D].Beijing: Academy of Armored Force Engineering,2013.
崔庆生.石墨烯/氧化石墨烯水分散体系摩擦学性能研究[D].北京:装甲兵工程学院,2013.
13 Wang J H, Song M, Li J L, et al. The preparation and tribological properties of water-soluble nano-silica particles[J].Tribology,2011,31(2):118.
王建华,宋敏,李金龙,等.水溶性纳米二氧化硅添加剂的制备及摩擦学性能研究[J].摩擦学学报,2011,31(2):118.
14 Yu G X, Zhang Q, Sun M B, et al. Preparation and tribological properties of water-soluble nanoscale SiO2[J].Journal of East China University of Science and Technology,2011,37(3):299.
余国贤,张倩,孙末宾,等.水溶性纳米SiO2的制备及其摩擦学性能[J].华东理工大学学报(自然科学版),2011,37(3):299.
15 Qiao Y L, Zhao H C, Cui Q S, et al. Research progress in composite materials of nanoparticles loaded on graphene[J].Materials Review A: Review Papers,2013,27(10):34.
乔玉林,赵海朝,崔庆生,等.石墨烯负载纳米粒子复合材料的研究进展[J]材料导报:综述篇,2013,27(10):34.
16 Li X S. Investigation on the preparation of graphene and composites and their applications[D].Beijing: Beijing University of Chemical Technology,2013.
李雪珊.石墨烯及其复合材料的制备和应用研究[D].北京:北京化工大学,2013.
17 Qiao Y L, Zhao H C, Zang Y, et al. The tribological properties of graphene-based LaF3 nanocomposite matirials[J].Rare Metal Mate-rials and Engineering,2017,46(5):1293.
乔玉林,赵海朝,臧艳,等.石墨烯负载纳米LaF3复合材料的摩擦学性能[J].稀有金属材料与工程,2017,46(5):1293.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[7] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[8] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[9] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[10] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[11] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[12] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[13] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[14] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[15] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed