Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16086-16092    https://doi.org/10.11896/cldb.20070196
  金属与金属基复合材料 |
湿式微喷砂处理对切削TC4的涂层刀具表面完整性及切削性能影响
常垲硕, 郑光明, 李阳, 程祥, 刘焕宝, 赵光喜
山东理工大学机械工程学院,淄博 255000
Effects of Wet Micro-blasting on Surface Integrity and Cutting Performance of Coating Tools for TC4 Cutting
CHANG Kaishuo, ZHENG Guangming, LI Yang, CHENG Xiang, LIU Huanbao, ZHAO Guangxi
School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
下载:  全 文 ( PDF ) ( 6220KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用涂层刀具高速切削TC4(Ti6-Al4-V)时,其寿命短的问题较为突出。对涂层刀具进行表面后处理可大幅提高涂层刀具的表面完整性,是延长刀具寿命的有效途径。针对高速干切削钛合金的TiAlN涂层刀具,选用湿式微喷砂处理工艺进行表面后处理,分析微喷砂处理对涂层刀具表面微观形貌、表面粗糙度、表面显微硬度、表面残余应力的影响规律,并进行高速干切削试验,深入研究微喷砂处理对涂层刀具寿命及磨损机理的影响。结果表明:合适的微喷砂处理工艺(水料混合湿式微喷砂,喷砂压强为0.1~0.5 MPa,喷砂时间为0~10 s, 喷砂颗粒为Al2O3或ZrO2颗粒)可去除涂层初始表面大颗粒、凸起等缺陷,从而改善刀具的表面形貌,但过高的喷砂参数会在涂层刀面引入凹坑、微裂纹等,增大了其表面粗糙度值。喷砂颗粒、喷砂时间主要影响颗粒撞击涂层表面时对TiAlN涂层材料的去除量,改变涂层刀面的形貌、粗糙度与残余应力,喷砂压强主要影响颗粒的冲击力度,改变表面的硬度与残余压应力。与未处理刀具相比,处理后的涂层刀具的表面完整性提升显著,稳定磨损阶段持续时间延长,刀具寿命可提升50%,微喷砂表面处理可广泛应用于各种涂层刀具表面处理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常垲硕
郑光明
李阳
程祥
刘焕宝
赵光喜
关键词:  微喷砂  涂层刀具  表面完整性  Ti6-Al4-V  切削性能  磨损机理    
Abstract: The problem of short service life of coated tools is prominent in high-speed cutting of TC4 (Ti6-Al4-V). The surface integrity of coated tools can be improved by surface post-treatment which is an effective way to improve the service life of coated tool. Experiment in high-speed dry cutting of titanium alloy is conducted with TiAlN coated tool which is post treatment by wet micro-blasting to reveal the influence of micro-blasting on surface micro morphology, roughness, micro hardness and residual stress. High-speed dry cutting tests are carried out to study the influence of micro-blasting on coated tool life and wear mechanism. The result indicates that the appropriate blasting process (water and particles mixed, wet micro-blasting, blasting pressure is 0.1—0.5 MPa, blasting time is 0—10 s, particle is Al2O3or ZrO2) can remove large particles, bumps and other micro defects of the coating surface to improve the surface morphology. However, too high blasting parameters has a significantly reduce tool life in machining, especially in high-speed cutting. The blasting particles and time mainly affect the removal of coating materials, and change the surface morphology, roughness and residual stress. The blasting pressure mainly affects the impact of particles, and improve the surface hardness and residual compressive stress. Compared with untreated tool, the surface integrity of treated tool improves obviously, the duration of stable wear stage is prolonged and the tool life can be increased by 50%.
Key words:  micro-blasting    coated tool    surface integrity    Ti6-Al4-V    cutting performance    wear mechanism
                    发布日期:  2021-09-07
ZTFLH:  TH17  
  TG712  
  TG146.2+3  
基金资助: 国家重点研发计划(2018YFB2001400);中国博士后科学基金(2019M652439);国家自然科学基金(51505264);淄博市校城融合发展计划(2018ZBXC003)
通讯作者:  zhengguangming@sdut.edu.cn   
作者简介:  常垲硕,山东理工大学硕士研究生在读。2017年毕业于山东理工大学,2018年至今于山东理工大学求学。主要研究方向为现代材料表面改性以及先进制造技术。
郑光明,山东理工大学副教授,硕士生导师。2007年9月至2012年6月,在山东大学机械工程学院硕博连读获得工学博士学位。2012年7月至今于山东理工大学机械工程学院任教。其中2017年11月至2018年5月在美国阿拉巴马大学机械工程系进行访问、合作研究。主要研究方向为:高速/高效切削加工技术;陶瓷刀具材料设计及制造;涂层刀具表面完整性研究。
引用本文:    
常垲硕, 郑光明, 李阳, 程祥, 刘焕宝, 赵光喜. 湿式微喷砂处理对切削TC4的涂层刀具表面完整性及切削性能影响[J]. 材料导报, 2021, 35(16): 16086-16092.
CHANG Kaishuo, ZHENG Guangming, LI Yang, CHENG Xiang, LIU Huanbao, ZHAO Guangxi. Effects of Wet Micro-blasting on Surface Integrity and Cutting Performance of Coating Tools for TC4 Cutting. Materials Reports, 2021, 35(16): 16086-16092.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070196  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16086
1 Zuo Y J, Liu X G. Journal of Chongqing University of Technology(Natural Science),2019,33(5),59(in Chinese).
左永基,刘小刚.重庆理工大学学报(自然科学),2019,33(5),59.
2 Zhang Y Y, Wang Y X, et al. Journal of Chongqing University of Technology(Natural Science), 2018,32(8),78(in Chinese).
张媛媛,王宇星,等.重庆理工大学学报(自然科学),2018,32(8),78.
3 Tang L Y, Tang L Y, Li P N, et al. Modular Machine Tool & Automatic Manufacturing Technique,2020(5), 128(in Chinese).
唐联耀, 唐玲艳, 李鹏南, 等.组合机床与自动化加工技术, 2020(5), 128.
4 Zhang T F, Wang Q M, Lee J, et al. Surface and Coatings Technology, 2012, 212, 199.
5 Zhao T, Xiao J M, Fan S M,et al. China Mechanical Engineering, 2020 (19), 2276(in Chinese).
赵亭, 肖继明, 范思敏, 等.中国机械工程,2020(19), 2276.
6 Cheng Y N, Han Y.Tool Engineering, 2015, 49(10), 3(in Chinese).
程耀楠, 韩禹. 工具技术, 2015, 49(10), 3.
7 Majid Abdoos, Bipasha Bose, Sushant Rawal,et al.Wear,2020,203342,454.
8 Chen L, Paulitsch J, Du Y, et al. Surface and Coatings Technology. 2012, 206, 2954.
9 Sui X D, Li G J, Qin X S, et al. Ceramics International, 2016, 42(6), 7524.
10 Han B, Jiang Z H, Liu P H. Journal of Shenyang Ligong University, 2015, 34(1), 5(in Chinese).
韩冰, 姜增辉, 刘朋和.沈阳理工大学学报, 2015, 34(1), 5.
11 Geng Z, Shi G L, Shao T M, et al. Surface and Coatings Technology, 2019, 364, 99.
12 Staia M H, D'Alessandria M, Quinto D T, et al. Journal of Physics: Condensed Matter, 2006, 18, S1727.
13 Qi Z B, Sun P, Zhu F P, et al. Surface and Coatings Technology, 2013, 231, 267.
14 Hou M D, Mou W P, Yan G H, et al. Surface and Coatings Technology, 2020, 397,125972.
15 Chu K, Shum P W, Shen Y G.Materials Science and Engineering B, 2006, 131, 62.
16 Barbatti C, Garcia J, Pitonak R, et al. Surface and Coatings Technology, 2009, 203(24), 3708.
17 Klocke F, Gorgels C, Bouzakis E, et al. Production Engineering—Research and Development,2009, 3, 453.
18 Lu X.Technology research of surface treatment of TiAlN coated carbide tools by high current pulsed electron beam. Master's Thesis, Shenyang Ligong University, China, 2015(in Chinese).
芦馨. TiAlN涂层刀具强流脉冲电子束表面处理的工艺研究. 硕士学位论文, 沈阳理工大学, 2015.
19 Liu C Y.Wet Micro-blasting Post-processing on TiN/Al2O3/TiCN and Al2O3/TiCN Coated Tools. Master's Thesis, Shandong University, China, 2018(in Chinese).
刘灿宇. TiN/Al2O3/TiCN和Al2O3/TiCN涂层刀具湿式微喷砂后处理工艺. 硕士学位论文,山东大学, 2018.
20 Bouzakis K D, Tsouknidas A, Skordaris G, et al. Tribology in Industry, 2011, 33(2), 49.
21 Xu P L, Liu Z Q. Modern Manufacturing Engineering, 2015(7), 85(in Chinese).
徐培利, 刘战强.现代制造工程, 2015(7), 85.
22 Jacob A, Gangopadhyay S, Satapathy A, et al. Journal of Manufacturing Processes, 2017, 2, 407.
23 Hu F, Dai M J, Lin S S.China Surface Engineering, 2011, 24(3), 53(in Chinese).
胡芳, 代明江, 林松盛.中国表面工程, 2011, 24(3), 53.
24 Skordaris G, Bouzakis K D, Kotsanis T, et al. CIRP Journal of Manufacturing Science and Technology, 2017, 18,145.
25 Xu Y L, Dini D. Surface and Coatings Technology, 2020, 394, 125860.
26 Wang D, Wan J. Materials Mechanical Engineering, 2019, 43(4), 64(in Chinese).
王丹, 万军.机械工程材料, 2019, 43(4), 64.
27 Zhang H J, Dong J H, Chen C, et al. Materials Reports, 2016, 30(S2), 554(in Chinese).
张慧婧,董俊慧,陈超,等.材料导报, 2016, 30(S2), 554.
28 Zhang E G, Wu Y.Modern PVD surface engineering technology and application. Shanghai Institute of Technology, Science Press, China, 2013(in Chinese).
张而耕, 吴雁.现代PVD表面工程技术及应用, 科学出版社, 2013.
29 Zheng G M, Cheng X, Yang X H, et al. Tribology,2018, 38(3), 356(in Chinese).
郑光明, 程祥, 杨先海, 等. 摩擦学学报,2018, 38(3), 356.
[1] 初铭强, 丁仁根, 张书彦, 郑江鹏, 张楠. 航空零部件加工表面完整性[J]. 材料导报, 2021, 35(7): 7183-7189.
[2] 单腾, 王思捷, 殷凤仕, 乔玉林, 刘鹏飞. 激光清洗的典型应用及对基体表面完整性影响的研究进展[J]. 材料导报, 2021, 35(11): 11163-11172.
[3] 刘明霞, 王冬, 张文康, 畅庚榕, 刘道新, 徐可为. 喷丸强化对17-4PH不锈钢室温及高温疲劳性能的影响[J]. 材料导报, 2020, 34(22): 22124-22129.
[4] 黎国猛, 梁益龙, 范航京, 张雄菲, 朱勇. 水射流喷丸预处理对42CrMo钢氮化后接触疲劳性能的影响[J]. 材料导报, 2019, 33(18): 3107-3112.
[5] 杨超, 陶鲭驰, 丁言飞. 无铅环保黄铜研究新进展[J]. 材料导报, 2019, 33(13): 2109-2118.
[6] 惠阳, 刘贵民, 闫涛, 杜林飞, 周雳. 载流摩擦磨损研究现状及展望[J]. 材料导报, 2019, 33(13): 2272-2280.
[7] 赵义鹏, 梁医, 冯虎田, 张立民, 徐斌. 滚动直线导轨副磨损特性和磨损机理试验研究[J]. 材料导报, 2018, 32(6): 915-923.
[8] 张世堂, 赵海朝, 乔玉林. 少层石墨烯负载纳米SiO2复合材料对水润滑性能的影响[J]. 材料导报, 2018, 32(24): 4235-4239.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed