Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22124-22129    https://doi.org/10.11896/cldb.19040114
  金属与金属基复合材料 |
喷丸强化对17-4PH不锈钢室温及高温疲劳性能的影响
刘明霞1, 王冬2, 张文康1, 畅庚榕1, 刘道新3, 徐可为1,4
1 西安文理学院陕西省表面工程与再制造重点实验室,西安 710065
2 西安陕鼓动力股份有限公司,西安 710082
3 西北工业大学航空学院,西安 710072
4 西安交通大学金属材料强度国家重点实验室,西安 710049
Effect of Shot Peening on Fatigue Properties of 17-4PH Stainless Steel at Room Temperature and High Temperature
LIU Mingxia1, WANG Dong2, ZHANG Wenkang1, CHANG Gengrong1, LIU Daoxin3, XU Kewei1,4
1 Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, Xi'an University, Xi'an 710065, China
2 Xi'an Shaangu Power CO., LTD, Xi'an 710082, China
3 School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
4 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 3193KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对17-4PH不锈钢进行不同喷丸强度的表面强化,采用X射线衍射仪(XRD)、光学显微镜(OM)和显微硬度仪研究表面残余应力、表面形貌和表面硬度的变化规律,采用疲劳实验和扫描电镜(SEM)考察室温及150 ℃、300 ℃和450 ℃不同温度场对疲劳性能的影响。结果表明,低强度喷丸通过引入残余应力场和保留表面完整性显著改善17-4PH的室温疲劳寿命;随着喷丸强度的增大,表面粗糙度呈升高趋势,加工硬化层的深度也趋于增加;但当喷丸强度超过中等强度水平,表层硬度不再增大;在疲劳寿命方面,不同温度场对17-4PH喷丸强化效果影响不同,当环境温度低于300 ℃时,喷丸能显著提高17-4PH的疲劳寿命,超过450 ℃时,疲劳性能显著降低。进一步分析表明,17-4PH高温疲劳性能的下降源于残余应力的严重松弛和表面完整性的降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘明霞
王冬
张文康
畅庚榕
刘道新
徐可为
关键词:  喷丸  疲劳  残余应力  表面完整性  高温    
Abstract: Surface strengthening of 17-4PH stainless steel with different shot peening (SP) strengths was studied in the present paper. Variation of surface residual stress, surface morphology and surface hardness were investigated by X-ray diffraction (XRD), optical microscopy (OM) and microhardness tester. The effects of different temperature fields on fatigue properties of SP 17-4PH stainless steel were studied by fatigue test and scanning electron microscopy (SEM). The results show that low strength SP can significantly improve the fatigue life of 17-4PH at room temperature by introducing residual stress field and retaining surface integrity. With the increase of SP strength, the surface roughness increases and the depth of working hardened layer tends to increase. However, when SP strength exceeds the medium strength level, the surface hardness no longer increases. In terms of fatigue life, different temperature fields have distinct effects on SP 17-4PH steel. When the ambient temperature is lo-wer than 300 ℃, the fatigue life of 17-4PH could be significantly increased by SP treatment, while the fatigue performance would be obviously reduced when the temperature is higher than 450 ℃. Further analysis shows that the decrease of high temperature fatigue properties of 17-4PH results from the serious relaxation of residual stress and the decrease of surface integrity.
Key words:  shot peening    fatigue    residual stress    surface integrity    high temperature
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TG668  
基金资助: 陕西省科技计划项目(2018JM5105;2018JQ5173;2013JM6002;14JK2122);陕西省教育厅科技项目(18JS096;18JS099);西安市科技计划项目(2019KJWL06;GXYD16.2);西安文理学院大创和科研团队项目(DC2019050; XAWLKYTD013)
通讯作者:  liumingxia1121@163.com   
作者简介:  刘明霞,2009年6月毕业于西安交通大学,获得材料学博士学位。2009—2016年在西安陕鼓动力股份有限公司研发部任职,2016年8月至今,入职西安文理学院机械与材料工程学院,主要从事装备制造领域金属材料表面防护关键技术的研究,现任陕西省表面工程与再制造重点实验室主任助理。在国内外期刊发表文章20余篇,获批发明专利5项。
引用本文:    
刘明霞, 王冬, 张文康, 畅庚榕, 刘道新, 徐可为. 喷丸强化对17-4PH不锈钢室温及高温疲劳性能的影响[J]. 材料导报, 2020, 34(22): 22124-22129.
LIU Mingxia, WANG Dong, ZHANG Wenkang, CHANG Gengrong, LIU Daoxin, XU Kewei. Effect of Shot Peening on Fatigue Properties of 17-4PH Stainless Steel at Room Temperature and High Temperature. Materials Reports, 2020, 34(22): 22124-22129.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040114  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22124
1 Liu M X, Chang G R, Fu F X, et al.Materials for Mechanical Enginee-ring, 2018, 42(1), 89(in Chinese).刘明霞, 畅庚榕, 付福兴, 等.机械工程材料, 2018, 42(1), 89.2 Hu Z H, Liu S F, Mei L B, et al.Journal of Materials Science & Engineering, 2017, 35(2), 237(in Chinese).胡兆辉, 刘松锋, 梅林波, 等.材料科学与工程学报, 2017, 35(2), 237.3 Shi Y X, Ma S B, Cai L J, et al.Special Steel, 2019, 40(1), 68(in Chinese).史咏鑫, 马胜斌, 才丽娟, 等.特殊钢, 2019, 40(1), 68.4 Deng D W, Chen R, Tian X, et al. Heat Treatment of Metals, 2013, 38(4), 32(in Chinese).邓德伟, 陈蕊, 田鑫, 等.金属热处理, 2013, 38(4), 32.5 Du J J, Lu Y Y, Chen H, et al. China Surface Engineering, 2018, 31(3), 9(in Chinese).杜锦铮, 路媛媛, 陈浩, 等.中国表面工程, 2018, 31(3), 9.6 Wang Z, Chen Y H, Jiang C H. Applied Surface Science, 2011, 257, 9830.7 Liu M X, Zhang H C, Liu D X, et al. Rare Metal Materials and Engineering, 2012, 41(S1), 236.8 Gao Y K, Yin Y F, Li X B.Heat Treatment of Metals, 2002, 27(8), 30(in Chinese).高玉魁, 殷源发, 李向斌.金属热处理, 2002, 27(8), 30.9 Wu Q H, Wang X, Fang X, et al.Hot Working Technology, 2017, 46(12), 158(in Chinese).吴庆辉, 王欣, 方向, 等.热加工工艺, 2017, 46(12), 158.10 Wang X, Hu Y H, Zeng H Y, et al. China Surface Engineering, 2016, 29(2), 111(in Chinese).王欣, 胡云辉, 曾惠元, 等.中国表面工程, 2016, 29(2), 111.11 Wang X, Zhang T, Huang Z H, et al. Rare Metal Materials and Engineering, 2018, 47(6),1668.12 Wang X, Zhong P, Lu F.China Surface Engineering, 2012, 25(2), 81(in Chinese).王欣, 钟平, 陆峰.中国表面工程, 2012, 25(2), 81.13 Wang X, Wang K C, Luo X K, et al.Aeronautical Manufacturing Technology, 2018, 61(23/24), 40(in Chinese).王欣, 王科昌, 罗学昆, 等.航空制造技术, 2018, 61(23/24), 40.14 Li P, Liu D X, Guan Y Y, et al. Materials for Mechanical Engineering, 2015, 39(1), 86(in Chinese).李鹏, 刘道新, 关艳英, 等.机械工程材料, 2015, 39(1), 86.15 Klemenz M, Schulze V, Rohr I, et al. Journal of Materials Processing Technology, 2009, 209(8), 4093.16 Chen M, Liu H B, Wang L B, et al. Applied Surface Science, 2018, 459, 155.17 Wang Z, Jiang C H, Gan X Y, et al. Applied Surface Science, 2010, 257(4),1154.18 Bagherifard S, Ghelichi R, Guagliano M, et al. Applied Surface Science, 2012, 258(18), 6831.19 Mahmoudi A H, Ghasemi A, Farrahi G H, et al. Materials & Design, 2016, 90, 478.20 Gao Y K. Acta Metallurgica Sinica, 2016, 52(8), 915(in Chinese).高玉魁.金属学报, 2016, 52(8), 915.21 Gao Y K. Materials Science and Engineering A, 2011, 528, 3823.22 Zhao X H, Zhou H Y, Liu Y. Results in Physics, 2018, 11, 452.23 Gao Y K, Zhong Z, Lei L M, et al. Rare Metal Materials and Engineering, 2016, 45(5), 1230(in Chinese).高玉魁, 仲政, 雷力明.稀有金属材料与工程, 2016, 45(5),1230.24 Zhang X H, Liu D X, Gao G R. Rare Metal Materials and Engineering, 2005, 34(12), 1985(in Chinese).张晓化, 刘道新, 高广睿.稀有金属材料与工程, 2005, 34(12), 1985.25 Fang L, Lin J P, Liang Y F, et al. Intermetallics, 2016, 78, 8.
[1] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[2] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[3] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[4] 李飘, 姚卫星. 镍基单晶合金低周机械疲劳寿命模型评述[J]. 材料导报, 2020, 34(9): 9124-9131.
[5] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[6] 瑚佩, 姜勇刚, 张忠明, 冯军宗, 李良军, 冯坚. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34(7): 7082-7090.
[7] 林启权, 周行, 董文正, 钦椿凯. CoO和Cr2O3复合掺杂对金属陶瓷的致密化及抗高温氧化性的影响[J]. 材料导报, 2020, 34(6): 6044-6048.
[8] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[9] 袁晓静, 关宁, 侯根良, 陈小虎, 马爽. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34(5): 5061-5067.
[10] 李啸轩, 张强, 朱春城. 以g-C3N4为原料快速合成Ti2Al(C,N)陶瓷及其层状生长机制研究[J]. 材料导报, 2020, 34(4): 4032-4036.
[11] 贾宝华, 刘翔, 顾永强, 李革. Yb2O3对Ti-1100铸态合金高温力学性能的影响[J]. 材料导报, 2020, 34(4): 4087-4092.
[12] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[13] 李启泉,李岩,马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(3): 3142-3147.
[14] 王晓娟,刘林,黄太文,杨文超,岳全召,霍苗,张军,傅恒志. 碳对镍基单晶高温合金凝固缺陷影响的研究进展[J]. 材料导报, 2020, 34(3): 3148-3156.
[15] 马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed