Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9124-9131    https://doi.org/10.11896/cldb.19030195
  金属与金属基复合材料 |
镍基单晶合金低周机械疲劳寿命模型评述
李飘1, 姚卫星1,2
1 南京航空航天大学飞行器先进设计技术国防重点学科实验室,南京 210016
2 南京航空航天大学机械结构力学及控制国家重点实验室,南京 210016
A Review of Low Cycle Mechanical Fatigue Life Models for Nickel-based Single Crystal Superalloy
LI Piao1, YAO Weixing1,2
1 Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 1659KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 航空发动机叶片等先进动力推进系统涡轮叶片长期服役于高温、高压、高离心力的工作环境,对叶片材料的性能有很高的要求。普通多晶合金材料存在晶界,晶界处较为脆弱,裂纹易滋生于晶界并沿晶界扩展。采用定向凝固工艺的镍基单晶合金消除了晶界组织,具有较高的高温强度、良好的蠕变与疲劳抗力、优异的热稳定性,长久以来一直作为涡轮叶片材料使用。镍基单晶材料的疲劳损伤是直接影响叶片服役时间的一个重要因素,疲劳损伤的评估依赖于合理有效的疲劳寿命模型。
镍基单晶材料的疲劳模型涉及范围很广泛。一方面,材料的工作环境复杂,涉及的疲劳问题包括机械疲劳、热疲劳、热机械疲劳以及蠕变疲劳等。另一方面,单晶材料本身的各向异性带来了疲劳性能的各向异性,取向偏离这一铸造缺陷决定了单晶材料的实际使用取向并非材料性能的择优取向。目前,研究者们主要从复杂环境带来的复杂疲劳状态和单晶本身的各向异性方面进行疲劳寿命模型的探究。
针对复杂的疲劳状态,目前的疲劳模型从基本机械疲劳出发,向各个侧重探究方向延伸,尚没有广泛适用且机理清晰的模型。机械疲劳模型的探究仍处于前列。在针对材料本身各向异性的研究方面,学者们提出了不同的各向异性疲劳性能的处理方式,如基于单晶体弹性模量各向异性的取向因子类模型,这类模型因操作简单而适合工程应用,但其预测能力缺乏评估。
由于复杂疲劳状态涉及范围太广,本文立足于低周机械疲劳,分类整理了其疲劳模型,按照疲劳损伤参量的定义思路将模型分为宏观损伤参量模型和微观损伤参量模型两大类,论述了各类模型的建模原理。同时收集了五种镍基单晶材料的11组疲劳试验数据,对典型模型进行了评估,以期为进一步探究镍基单晶的疲劳寿命模型提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李飘
姚卫星
关键词:  镍基单晶合金  低周机械疲劳  寿命模型    
Abstract: The turbine blades of advanced power propulsion systems such as aeroengines have long been serving in high temperature, high pressure and high centrifugal force working environment, which requires high performance of blade materials. Common polycrystalline alloys have grain boundaries, which are relatively fragile. Cracks tend to grow at and propagate along grain boundaries. The nickel-based single crystal alloys, developed with directional solidification process, have been used as turbine blade materials for a long time with their elevated temperature strength, good creep and fatigue resistance and excellent thermal stability resulted from the elimination of grain boundary. Fatigue damage of nic-kel-based single crystal material is an important factor that directly affects the service life of blades. The assessment of fatigue damage depends on reasonable and effective fatigue life models.
The research of fatigue model of nickel-based single crystal materials concerns a wide range of studies. On the one hand, the working environment of nickel-based single crystal material is complex. The fatigue problems occurring during service include mechanical fatigue, thermal fatigue, thermomechanical fatigue and creep fatigue. On the other hand, the anisotropy of the single crystal material itself leads to the anisotropy of fatigue properties. The orientation deviation caused in casting determines that the actual orientation of the single crystal material is not the preferred orientation of material properties. At present, researchers mainly study the fatigue life models by focusing on the complex fatigue states caused by complex environment and the anisotropy of crystal itself.
In view of the complex fatigue states, the current fatigue models extend basic mechanical fatigue to various fatigue research directions. There is no widely applicable model with clear fatigue mechanism. The research of mechanical fatigue model still plays an important role. In the research of material anisotropy, scholars have proposed different ways to deal with the anisotropic fatigue properties, such as the widely recognized orientation parameter models based on single crystal modulus anisotropy. This kind of model is suitable for engineering application because of its simplicity, meanwhile the evaluation of their predictive ability is still absent.
Since the complex fatigue states cover a wide range, this paper focuses only on low cycle mechanical fatigue. The basic low-cycle mechanical fatigue models of nickel-based single crystal superalloys are sorted and classified into two categories: macroscopic damage parameter model and micro-damage parameter model according to the definition of fatigue damage parameters. The modeling mechanisms of various models are discussed. 11 sets of fatigue test data of five kinds of nickel-based single crystal materials were collected to evaluate the typical models, looking forward to providing insights in further study of the fatigue life model of nickel-based single crystals.
Key words:  nickel-based single crystal superalloy    low cycle mechanical fatigue    life model
                    发布日期:  2020-04-27
ZTFLH:  V232.4  
  O346.2  
基金资助: 国家科技重大专项(2017-VⅠ-0003-0073)
通讯作者:  wxyao@nuaa.edu.cn   
作者简介:  李飘,2016年6月毕业于南京航空航天大学,获得理学学士学位。现为南京航空航天大学航空学院博士研究生,在姚卫星教授的指导下进行研究工作。目前主要研究领域为材料的各向异性与疲劳。
姚卫星,南京航空航天大学航空学院教授。长期从事飞行器设计的教学和科研工作,发表论文250余篇,出版专著和教材5部,获得7项省部级科技成果奖。
引用本文:    
李飘, 姚卫星. 镍基单晶合金低周机械疲劳寿命模型评述[J]. 材料导报, 2020, 34(9): 9124-9131.
LI Piao, YAO Weixing. A Review of Low Cycle Mechanical Fatigue Life Models for Nickel-based Single Crystal Superalloy. Materials Reports, 2020, 34(9): 9124-9131.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030195  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9124
1 Sun X F, Jin T, Zhou Y Z, et al. Materials China,2012,31(12),1(in Chinese).
孙晓峰,金涛,周亦胄,等.中国材料进展,2012,31(12),1.
2 Vacchieri E, Holdsworth S R, Costa A, et al. Materials at High Temperatures,2014,31(4),348.
3 Pierce C J, Palazotto A N, Rosenberger A H. Materials Science and Engineering: A,2010,527(29),7484.
4 Moreno V, Nissley D M, Lin L S. Creep fatigue life prediction for engine hot section materials (isotropic),NASA-CR-174844,1984.
5 Nelson R S, Schoendorf J F, Lin L S. Creep fatigue life prediction for engine hot section materials (isotropic),NASA-CR-179550,1986.
6 Nelson R S, Levan G W, Harvey P R. Creep fatigue life prediction for engine hot section materials (isotropic),NASA-CR-189221,1989.
7 Nissley D M, Meyer T G. Life prediction and constitutive models for engine hot section anisotropic materials program,NASA-CR-189222,1992.
8 Nelson R S, Levan G W. Creep fatigue life prediction for engine hot section materials (isotropic)(Final Report),NASA-CR-189221,1993.
9 Leverant G R, Gell M. Metallurgical Transactions A,1975,6(2),367.
10 Telesman J, Ghosn L J. Journal of Engineering for Gas Turbines and Power,1996,118(2),399.
11 Gabb T P, Welsch G, Miner R V, et al. Materials Science and Enginee-ring: A,1989,108,189.
12 Liu L, Meng J, Liu J, et al. Materials & Design,2017,131,441.
13 Kim I S, Choi B G, Jung J E, et al. Materials Characterization,2015,106,375.
14 Ma X, Shi H J, Gu J, et al. Fatigue & Fracture of Engineering Materials & Structures,2015,38(3),340.
15 Nazmy M, Denk J, Baumann R, et al. Scripta Materialia,2003,48(5),519.
16 Li S X, Ellison E G, Smith D J. The Journal of Strain Analysis for Engineering Design,1994,29(2),147.
17 Li S X, Smith D J. Fatigue & Fracture of Engineering Materials & Structures,1995,18(5),617.
18 Chen H, Jiang H D. Journal of Mechanical Strength,2015,37(5),857(in Chinese).
陈宏,蒋洪德.机械强度,2015,37(5),857.
19 Tang H, Guo H. Materials at High Temperatures,2018,35(6),535.
20 Ding Z P, Liu Y L, Yin Z Y. Journal of Mechanical Strength,2003,25(3),254(in Chinese).
丁智平,刘义伦,尹泽勇.机械强度,2003,25(3),254.
21 Shi Huiji, Ma Xianfeng, Yu Tao. Chinese Journal of Solid Mechanics,2010,31(6),696(in Chinese).
施惠基,马显锋,于涛.固体力学学报,2010,31(6),696.
22 Jiao F, Bettge D, sterle W, et al. Acta Materialia,1996,44,3933.
23 Shi D Q, Huang J, Yang X G, et al. International Journal of Fatigue,2013,49,31.
24 Dalal R P, Dardi L E, Thomas C R. Superalloys,TMS-AIME, Warrendate,1984,185-197.
25 Li S, Ping L. Rare Metal Materials and Engineering,2015,44(2),288.
26 Shi Z, Wang X, Liu S, et al. Progress in Natural Science: Materials International,2015,25(1),78.
27 Brien V, Décamps B. Materials Science and Engineering: A,2001,316(1),18.
28 Li S X, Smith D J. Fatigue & Fracture of Engineering Materials & Structures,1995,18(5),631.
29 Ding Z P. Study on multiaxial low cycle fatigue damage of single crystal nickel-based superalloy. Ph.D. Thesis, Central South University, China,2005(in Chinese).
丁智平.复杂应力状态镍基单晶高温合金低周疲劳损伤研究.博士学位论文,中南大学,2005.
30 Fedelich B. International Journal of Plasticity,2002,18(1),1.
31 Graverend J B, Cormier J, Gallerneau F, et al. International Journal of Plasticity,2014,59,55.
32 Cormier J, Cailletaud G. Materials Science and Engineering: A,2010,527(23),6300.
33 Busso E P, Meissonnier F T, O’Dowd N P. Journal of the Mechanics and Physics of Solids,2000,48(11),2333.
34 Hou N X, Gou W X, Wen Z X, et al. Materials Science and Engineering: A,2008,492(1),413.
35 Segersäll M, Leidermark D, Moverare J J. Materials Science and Engineering: A,2015,623,68.
36 Wang W Z, Sakane M, Itoh T, et al. Advanced Materials Research,2014,891-892,1027.
37 Leverant G R, Gell M, Hopkins S W. Materials Science and Engineering,1971,8(3),125.
38 MacLachlan D W, Knowles D M. Fatigue & Fracture of Engineering Materials & Structures,2008,24(8),503.
39 Shi D Q, Yang X G, Yu H C. Journal of Aerospace Power,2010,25(8),1871(in Chinese).
石多奇,杨晓光,于慧臣.航空动力学报,2010,25(8),1871.
40 Zhou B Z. A research of constitutive relationships for hot section anisotropic materials. Ph.D. Thesis, Beihang University,China(in Chinese).
周柏卓.各向异性高温涡轮叶片材料本构关系研究.博士学位论文,北京航空航天大学,1999.
41 Mücke R, Woratat P. Journal of Engineering for Gas Turbines and Power,2010,132(5),52401.
42 Pan D, Yang X G, Hu X A, et al. Aeroengine,2014(3),45(in Chinese).
潘冬,杨晓光,胡晓安,等.航空发动机,2014(3),45.
43 Dong C L, Yu H C, Li Y, et al. International Journal of Fatigue,2014,61,21.
44 Chen J P, Ding Z P, Yin Z Y, et al. Acta Mechanica Solida Sinica,2007,28(2),115(in Chinese).
陈吉平,丁智平,尹泽勇,等.固体力学学报,2007,28(2),115.
45 Gell M, Leverant G R. Acta Metallurgica,1968,16(4),553.
46 Yi J Z, Torbet C J, Feng Q, et al. Materials Science and Engineering: A,2007,443(1),142.
47 Chan K S, Leverant G R. Metallurgical Transactions A-Physical Metallurgy and Materials Science,1987(4),593.
48 Swanson G R, Arakere N K. Effect of crystal orientation on analysis of single-crystal, nickel-based turbine blade superalloys, NASA/TP-2000-210074,2000.
49 Naik R A, DeLuca D P, Shah D M. Journal of Engineering for Gas Turbines and Power,2004,126(2),391.
50 Arakere N K, Swanson G. Journal of Engineering for Gas Turbines and Power,2002,124(1),161.
51 Ranjan S, Arakere N K. Journal of Engineering for Gas Turbines and Power,2008,130(3),32501.
52 Sun W C, Lu S. Journal of Mechanical Strength,2013,35(5),657(in Chinese).
孙万超,陆山.机械强度,2013,35(5),657.
53 Wang R Q, Jin F L, Hu Y D. Journal of Aerospace Power,2013,28(11),2587(in Chinese).
王荣桥,荆甫雷,胡殿印.航空动力学报,2013,28(11),2587.
54 Wang R Q, Jiang K H, Hu D Y, et al. Journal of Aerospace Power,2016,31(6),1359(in Chinese).
王荣桥,蒋康河,胡殿印,等.航空动力学报,2016,31(6),1359.
55 Yue Z F, Lu Z Z. Metallurgical and Materials Transactions A,1998,29(13),1093.
56 Yue Z F, Tao X D, Yin Z Y, et al. Applied Mathematics and Mechanics,2000,21(4),373(in Chinese).
岳珠峰,陶仙德,尹泽勇,等.应用数学和力学,2000,21(4),373.
57 Levkovitch V, Sievert R, Svendsen B. International Journal of Fatigue,2006,28(12),1791.
58 Rémy L, Geuffrard M, Alam A, et al. International Journal of Fatigue,2013,57,37.
59 Tinga T, Brekelmans W A M, Geers M G D. Materials Science and Engineering: A,2009,508(1),200.
60 Guo Y Q, Zhang K S, Geng X L, et al. Rare Metal Materials and Engineering,2007(8),1331(in Chinese).
郭运强,张克实,耿小亮,等.稀有金属材料与工程,2007(8),1331.
61 Pollock T M, Argon A S. Acta Metallurgica et Materialia,1994,42(6),1859.
62 Sakaguchi M, Okazaki M. International Journal of Fatigue,2007,29(9),1959.
63 Okazaki M, Sakaguchi M. International Journal of Fatigue,2008,30(2),318.
64 Ding Z P, Li M, Wang T F, et al. Applied Mechanics and Materials,2012,117-119,503.
65 Ding Z P, Wang T F, Li M, et al. Chinese Journal of Materials Research,2011,25(5),455(in Chinese).
丁智平,王腾飞,李明,等.材料研究学报,2011,25(5),455.
66 Meissonnier F T, Busso E P, O’Dowd N P. International Journal of Plasticity,2001,17(4),601.
67 Shui L, Liu P. Rare Metal Materials and Engineering,2015,44(2),288(in Chinese).
水丽,刘平.稀有金属材料与工程,2015,44(2),288.
68 Ma X, Shi H, Gu J, et al. Acta Mechanica Solida Sinica,2008,21(4),289.
69 Xiong X, Quan D, Dai P, et al. Materials Science and Engineering: A,2015,636,608.
70 Takeuchi S, Kuramoto E. Acta Metallurgica,1973,21(4),415.
71 Liu Y, Yu J J, Xu Y, et al. H Materials Science and Engineering: A,2007,454-455,357.
72 Han G M, Yu J J, Sun X F, et al. Rare Metal Materials and Enginee-ring,2011,40(4),673(in Chinese).
韩国明,于金江,孙晓峰,等.稀有金属材料与工程,2011,40(4),673.
73 Ding Z P, Chen J P, Yin Z Y, et al. Rare Metal Materials and Enginee-ring,2006,35(10),1548(in Chinese).
丁智平,陈吉平,尹泽勇,等.稀有金属材料与工程,2006,35(10),1548.
74 Kanda M, Sakane M. Journal of Engineering Materials & Technology,1997,119(2),153.
75 Chen J P, Ding Z P, Yin Z Y. Chinese Journal of Mechanical Enginee-ring,2008,44(2),213(in Chinese).
陈吉平,丁智平,尹泽勇.机械工程学报,2008,44(2),213.
76 Gabb T P, Gayda J, Miner R V. Metallurgical Transactions A,1986,17(3),497.
77 Arakere N K. Journal of Engineering for Gas Turbines and Power,2004,126(3),590.
78 Li Y, Su B. Journal of Aerospace Power,2003,18(6),732(in Chinese).
李影,苏彬.航空动力学报,2003,18(6),732.
79 Li Y, Su B, Wu X R. Journal of Aerospace Power,2001,21(2),22(in Chinese).
李影,苏彬,吴学仁.航空材料学报,2001,21(2),22.
No related articles found!
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed