Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4032-4036    https://doi.org/10.11896/cldb.19010042
  无机非金属及其复合材料 |
以g-C3N4为原料快速合成Ti2Al(C,N)陶瓷及其层状生长机制研究
李啸轩, 张强, 朱春城
哈尔滨师范大学化学化工学院,哈尔滨 150025
Rapid Synthesis and Layered Growth Mechanism of Ti2Al(C,N) Using g-C3N4 as Raw Material
LI Xiaoxuan, ZHANG Qiang, ZHU Chuncheng
College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
下载:  全 文 ( PDF ) ( 4849KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以Ti、Al和g-C3N4粉体为原料,采用快速、能耗低的自蔓延高温合成法制备出Ti2Al(C,N)。当Ti、Al和g-C3N4的物质的量比为2∶1.05∶1时,Ti2Al(C,N)的含量最高。在反应过程中,Al的熔化促进了Ti(s)和g-C3N4(s)反应生成Ti(C,N)(s),在降温阶段Ti(s)和Al(l)形成TiAl(s),之后Ti(C,N)(s)和TiAl(s)反应生成片层状的Ti2Al(C,N)(s)。Ti2Al(C,N)晶粒的层状生长研究表明,Ti2Al(C,N)为二维生长机制,以阶梯状生长模式生长;Ti2Al(C,N)大晶粒的片层存在向内的扩展方式;杂质小颗粒的存在对Ti2Al(C,N)片层的横向扩展产生阻碍作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李啸轩
张强
朱春城
关键词:  Ti2Al(C,N)  自蔓延高温合成  层状生长机制    
Abstract: Ti2Al(C,N) was prepared from Ti, Al and g-C3N4 powders by fast, low-energy self-propagating high temperature synthesis. When the molar ratio of Ti, Al and g-C3N4 is 2∶1.05∶1, the content of Ti2Al(C,N) is the highest. In the reaction, the melting of Al promotes the formation of Ti(C,N)(s) from Ti(s) and g-C3N4(s), Ti(s) and Al(l) form TiAl(s) at the cooling stage, followed by Ti(C,N)(s) and TiAl(s) are subjected to reaction to form a layered Ti2Al(C,N)(s). The study of the layered growth of Ti2Al(C,N) grains shows that Ti2Al(C,N) is a two-dimensional growth mechanism and grows in a step-like growth mode; the Ti2Al(C,N) large grain layers has an inward lateral spreading mode; the presence of small impurity particles hinders the lateral spreading of the Ti2Al(C,N) layer.
Key words:  Ti2Al(C,N)    self-propagating high temperature synthesis    layered growth mechanism
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TG148  
基金资助: 黑龙江省自然科学基金重点项目(ZD2017011);国家自然科学基金(51572064)
通讯作者:  zhuccshs@163.com   
作者简介:  李啸轩,男,1993年生,硕士生,主要从事陶瓷基复合材料的制备研究;朱春城,男,1964年生,教授,硕士研究生导师,研究方向为陶瓷基复合材料。主持国家自然科学基金面上项目2项,主持多项省级科研项目,获得10余项国家授权发明专利,获得黑龙江省科技二等奖,发表50余篇科研论文。
引用本文:    
李啸轩, 张强, 朱春城. 以g-C3N4为原料快速合成Ti2Al(C,N)陶瓷及其层状生长机制研究[J]. 材料导报, 2020, 34(4): 4032-4036.
LI Xiaoxuan, ZHANG Qiang, ZHU Chuncheng. Rapid Synthesis and Layered Growth Mechanism of Ti2Al(C,N) Using g-C3N4 as Raw Material. Materials Reports, 2020, 34(4): 4032-4036.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010042  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4032
1 Barsoum M W, Radovic M. Annual Review of Materials Research, 2011, 41(41),195.
2 Sun M Z. International Materials Reviews, 2011, 56(3),143.
3 Li J H, Zhang C, Wang X H. Advanced Ceramic, 2017, 38(1),3(in Chinese).
李建华, 张超, 王晓辉. 现代技术陶瓷, 2017, 38(1),3.
4 Meng F L. Synthesis and characterization of several ternary layered ceramics solid solutions. Doctor’s Thesis, Institute of Metal Research, Chinese Academy of Sciences, China, 2008(in Chinese).
孟凡玲.几种三元层状陶瓷固溶体的制备和表征. 博士学位论文,中国科学院金属研究所,2008.
5 Cabioch T, Eklund P, Mauchamp V, et al. Journal of the European Ceramic Society, 2013, 33(4),897.
6 Yeh C L, Yang W J. Ceramics International, 2013, 39(7),7537.
7 Zhang X, Shen Z Y, Jian N, et al. Chinese Journal of Inorganic Chemistry, 2019, 35(1),101(in Chinese).
张欣, 沈正阳, 简旎, 等. 无机化学学报, 2019, 35(1),101.
8 Manoun B, Saxena S K, Hug G, et al. Journal of Applied Physics, 2007, 101(11),329.
9 Barsoum M W, El-Raghy T, Ali M. Metallurgical & Materials Transactions A, 2000, 31(7),1857.
10 Radovic M, Ganguly A, Barsoum M W. Journal of Materials Research, 2008, 23(6),1517.
11 Du Y L, Sun Z M, Hashimoto H, et al. Physics Letters A, 2009, 374(1),78.
12 Cabioc’H T, Eklund P, Mauchamp V, et al. Journal of the European Ceramic Society, 2012, 32(8),1803.
13 Scabarozi T, Ganguly A, Hettinger J D, et al. Journal of Applied Ph-ysics, 2008, 104(7),073713.
14 Yu W, Mauchamp V, Cabioc’H T, et al. Acta Materialia, 2014, 80,421.
15 Song X, Cui H, Han Y, et al. ACS Applied Materials & Interfaces, 2018, 10(19),16783.
16 Yu X, Yohan D, Michael N, et al. ACS Nano, 2014 , 8(9),9606.
17 Zheng W, Yang L, Zhang P G, et al. Materials Review A:Review Papers, 2018, 32(8),2513(in Chinese).
郑伟, 杨莉, 张培根, 等. 材料导报:综述篇, 2018, 32(8),2513.
18 Ying G, Dillon A D, Fafarman A T, et al. Materials Research Letters, 2017, 9439,391.
19 Geng X, Wen G W, Yang S Y, et al. Journal of the Chinese Ceramic Society, 2018, 46(3),315(in Chinese).
耿欣, 温广武, 杨思宇,等. 硅酸盐学报, 2018, 46(3),315.
20 Emmerlich J, Hogberg H, Sasvari S, et al. Journal of Applied Physics, 2004, 96(9),4817.
21 Liu G, Chen K, Zhou H, et al. Materials Letters, 2007, 61(3),779.
22 Kong F, Feng K, Bai Y, et al. Journal of Materials Research, 2017, 32(14),2747.
23 Qian Y, Li C, Zhu J, et al. Rare Metal Materials and Engineering, 2013, 42(S1),241(in Chinese).
钱莹, 李翀, 朱佳, 等. 稀有金属材料与工程, 2013, 42(S1),241.
24 Liang B Y, Wang L, Wang Z W, et al. Materials Science and Enginee-ring of Powder Metallurgy, 2013(5),675(in Chinese).
梁宝岩, 汪乐, 王志炜, 等. 粉末冶金材料科学与工程, 2013(5),675.
25 Saeed M A E, Deorsola F A, Rashad R M. International Journal of Refractory Metals & Hard Materials, 2012, 35(2),127.
26 Liu G H, Li J T. Advances in Applied Ceramics, 2012, 111(4),196.
27 Guo J M, Chen K X, Ge Z B, et al. Acta Metallurgica Sinica, 2003, 39(3),315(in Chinese).
郭俊明, 陈克新, 葛振斌, 等. 金属学报, 2003, 39(3),315.
28 Yeh C L, Kuo C W. Journal of Alloys and Compounds, 2010, 502(2),461.
29 Tian J J, Zhang L L, Bi X W, et al. Advanced Materials Research, 2013, 710,37.
30 Yeh C L, Shen Y G. Journal of Alloys and Compounds, 2009, 473(1-2),408.
31 Yeh C L, Kuo C W. Journal of Alloys and Compounds, 2011, 509(3),651.
32 Luo Y, Zheng Z, Mei X, et al. Journal of Crystal Growth, 2008, 310(14),3372.
[1] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[2] 何宁宁,侯晨曦,舒小艳,马登生,卢喜瑞. 自蔓延高温合成技术在高放废物处理领域的应用进展[J]. 《材料导报》期刊社, 2018, 32(3): 510-514.
[3] 张 薇,肖国庆,丁冬海. 硼砂对自蔓延高温合成ZrB2粉体的影响[J]. 《材料导报》期刊社, 2017, 31(24): 125-128.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed