Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 510-514    https://doi.org/10.11896/j.issn.1005-023X.2018.03.023
     材料综述 |
自蔓延高温合成技术在高放废物处理领域的应用进展
何宁宁,侯晨曦,舒小艳,马登生,卢喜瑞
西南科技大学核废物与环境安全国防重点学科实验室,绵阳 621010
Application of SHS Technique for the High-level Radioactive Waste Disposal
Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU
Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security,Southwest University of Science and Technology, Mianyang 621010
下载:  全 文 ( PDF ) ( 1222KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

高放废物难以安全高效处理一直是制约核工业发展的关键因素之一。目前,自蔓延高温合成技术(SHS)作为一种高效、简单、低耗能的高放废物固化体合成手段,成为当下高放废物处理研究的热点领域之一。简述了SHS技术的原理及特点,着重介绍了近年来SHS技术在高放废物固化领域的应用,探讨了现阶段SHS技术的研究进展和发展方向,并对其未来发展趋势进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何宁宁
侯晨曦
舒小艳
马登生
卢喜瑞
关键词:  自蔓延高温合成  高放射性废物  固化    
Abstract: 

The safe and efficient treatment of high-level radioactive waste (HLW) has been one of the key factors which restrict the development of nuclear industry. As an efficient, simple and low energy consumption method of matrix synthesis, SHS technology has became the current hot spots in the field of HLW disposal. In this paper, the principle and characteristics of SHS technology are briefly introduced, while the application of SHS technology on the field of HLW curing in recent years and the research progress of SHS technology are especially elaborated. Meanwhile, the developing trends in the future are proposed.

Key words:  self propagating high temperature synthesis    high-level radioactive waste    solidification
               出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TL941  
基金资助: 国家自然科学基金(21507105);四川省教育厅重点项目(15ZB0116);核废物与环境安全国防重点学科实验室开放基金(15yyhk10);西南科技大学博士研究基金(10zx7126);四川省大学生创新创业训练计划资助项目(201710619061)
作者简介:  何宁宁:男,1996年生,硕士研究生,研究方向为高放废物人造岩石固化 E-mail: heningningmvp@163.com|卢喜瑞:通信作者,男,1983年生,博士,副研究员,研究方向为核废物处理与环境恢复 E-mail: luxiruimvp116@163.com
引用本文:    
何宁宁,侯晨曦,舒小艳,马登生,卢喜瑞. 自蔓延高温合成技术在高放废物处理领域的应用进展[J]. 《材料导报》期刊社, 2018, 32(3): 510-514.
Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal. Materials Reports, 2018, 32(3): 510-514.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.023  或          http://www.mater-rep.com/CN/Y2018/V32/I3/510
图1  自蔓延高温反应过程示意图
Reaction
temperature
K
Propagation velocity
of combustion
wave/(cm·s-1)
Heating
rate
K·s-1
Duration of
ignition
s
1 000—6 500 0.1—15 103—106 0.05—4.0
表1  SHS特征参数[25]
图2  SHS技术制备放射性废物人造岩石固化体的工艺流程图[28]
图3  SHS工艺玻璃化处理系统示意图
1 Ewing R C, Weber W J, Clinard F W . Radiation effects in nuclear waste forms for high-level radioactive waste[J]. Progress in Nuclear Energy, 1995,29(2):63.
2 Luo Shanggeng . Securities for disposal of super-radioactive waste[J]. Science & Technology Review, 1992,10(12):22(in Chinese).
2 罗上庚 . 高放废物处置安全研究[J]. 科技导报, 1992,10(12):22.
3 Luo Shanggeng . On the decommissioning strategies[J].Nuclear Safty,2011(1):13(in Chinese).
3 罗上庚 . 论退役策略[J].核安全,2011(1):13.
4 Ahearne J F . Radioactive waste[J]. Physics Today, 1997,50(50):22.
5 Donald I W, Metcalfe B L , Taylor R N J. The immobilization of high level radioactive wastes using ceramics and glasses[J]. Journal of Materials Science, 1997,32(22):5851.
6 Guloyan Y A . Solidification of glass in molding (a review)[J]. Glass and Ceramics, 2004,61(11-12):357.
7 Lutze W, Ewing R C . Radioactive waste forms for the future[M]. New York:Elsevier Science Pub.Co.Inc., 1988.
8 Ojovan M I, Lee W E . An introduction to nuclear waste immobilisation[M]. Elsevier, 2014.
9 Weber W J, Ewing R C, Angell C A , et al. Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition[J]. Journal of Materials Research, 1997,12(8):1948.
10 Wang S, Alekseev E V, Ling J , et al. Polarity and chirality in uranyl borates: Insights into understanding the vitrification of nuclear waste and the development of nonlinear optical materials[J]. Che-mistry of Materials, 2010,22(6):2155.
11 Vienna J D . Nuclear waste vitrification in the United States: Recent developments and future options[J]. International Journal of Applied Glass Science, 2010,1(3):309.
12 Ringwood A E, Kesson S E, Ware N G , et al. The SYNROC process: A geochemical approach to nuclear waste immobilization[J]. Geochemical Journal, 1979,13(4):141.
13 Ringwood A E, Kesson S E, Ware N G , et al. Immobilization of high level nuclear reactor wastes in SYNROC[J]. Nature, 1979,278(5701):219.
14 Wang L, Liang T . Ceramics for high level radioactive waste solidification[J]. Journal of Advanced Ceramics, 2012,1(3):194.
15 Brinkman K S, Marra J C, Amoroso J , et al. Crystalline ceramic waste forms: Comparison of reference process for ceramic waste form fabrication[R]. Office of Scientific & Technical Information Technical Reports, 2013.
16 Su X, Fu F, Yan Y , et al. Self-propagating high-temperature synjournal for compound thermoelectrics and new criterion for combustion processing[J]. Nature Communications, 2014,5:4908.
17 Zhang Ruizhu . Self-propagating high-temperature synjournal for the immobilization of high-level radioactive waste[J]. Journal of Chinese Ceramic Society, 2008,36(10):1484(in Chinese).
17 张瑞珠 . 自蔓延高温合成法固化高放射性核废料[J]. 硅酸盐学报, 2008,36(10):1484.
18 Muthuraman M, Dhas N A, Patil K C . Combustion synjournal of oxide materials for nuclear waste immobilization[J]. Bulletin of Materials Science, 1994,17(6):977.
19 Aruna S T, Muthuraman M, Patil K C . Synjournal and properties of Ni-YSZ cermet: Anode material for solid oxide fuel cells[J]. Solid State Ionics, 1998,111(1):45.
20 郭志猛, 高峰, 杨珂 , 等. 自蔓延高温合成法固化高放核废料的研究[ C]∥2006全国核材料学术交流会论文集.北京, 2006: 72.
21 Barinova T V, Borovinskaya I P, Ratnikov V I , et al. SHS immobilization of radioactive wastes[J]. Key Engineering Materials, 2002,217:193.
22 Zhang Ruizhu . Self-propagating high-temperature synthesis for ra-dioactive waste immobilization[D]. Beijing:University of Science and Technology Beijing, 2005(in Chinese).
22 张瑞珠 . 利用自蔓延高温合成技术固化放射性废物[D]. 北京:北京科技大学, 2005.
23 Yudintsev S V, Ioudintseva T S, Mokhov A V, et al. Study of pyrochlore and garnet-based matrices for actinide wastes produced by a self-propagating high-temperature synconfproc [C]∥MRS Procee-dings, 2003: 807.
24 Vinokurov S E, Yu M Kulyako, Perevalov S A , et al. Immobilization of actinides in pyrochlore-type matrices produced by self-propagating high-temperature synjournal[J]. Comptes Rendus Chimie, 2007,10(10):1128.
25 陈梦君, 卢喜瑞, 王蓉 . 放射性核废物的高温自蔓延处理研究进展[ C]∥全国环境化学大会暨环境科学仪器与分析仪器展览会.上海, 2011.
26 Gong Hengfeng, Ma Junping, Li Gongping , et al. Present research on synroc forms[J]. Journal of Gansu Science, 2009,21(4):150(in Chinese).
26 龚恒风, 马俊平, 李公平 , 等. 人造岩石固化体的研究现状[J]. 甘肃科学学报, 2009,21(4):150.
27 Wang Shenghong . The latest developments in self-propagating high temperature synjournal(SHS) technique[J]. Powder Metallurgy Industry, 2001,11(2):26(in Chinese).
27 王声宏 . 自蔓延高温合成(SHS)技术的最新进展[J]. 粉末冶金工业, 2001,11(2):26.
28 Fan Long . Fabrication and stability of Gd2Zr2O7 pyrochlore waste forms for multi-nuclides incorporation[D]. Mianyang: Southwest University of Science and Technology, 2016(in Chinese).
28 樊龙 . 钆锆烧绿石晶格固化多核素的机理及稳定性研究[D]. 绵阳:西南科技大学, 2016.
29 Glagovsky E M, Kouprine A V, Pelevine L P , et al. Study of matrices synjournaled by a self-propagating high-temperature synjournal[J]. Czechoslovak Journal of Physics, 2003,53(1):A657.
30 Glagovskii E M, Yudintsev S V, Kuprin A V , et al. Crystalline host phases for actinides, obtained by self-propagating high-temperature synjournal[J]. Radiochemistry, 2001,43(6):632.
31 Barinova T V, Borovinskaya I P, Ratnikov V I , et al. Self-propagating high-temperature synjournal for immobilization of high-level waste in mi-neral-like ceramics: 2. Immobilization of cesium in ceramics based on perovskite and zirconolite[J]. Radiochemistry, 2008,50(3):321.
32 Zhang Ruizhu, Guo Zhimeng . Solidification of radiation waste with Sr 2+ perovskite synrock SHS method [J]. The Chinese Journal of Nonferrous Metals, 2004,14(s2):110(in Chinese).
32 张瑞珠, 郭志猛 .含锶核素( Sr 2+)高放射性废物的SHS固化 [J]. 中国有色金属学报, 2004,14(s2):110.
33 Zhang Ruizhu, Tong Yuping, Yang Li , et al. Synjournal of perovskite by double-SHS for immobilization of 90Sr [J]. Journal of Nuclear and Radiochemistry, 2009,31(4):237(in Chinese).
33 张瑞珠, 仝玉萍, 杨丽 , 等. 二次自蔓延高温合成钙钛矿固化~ 90Sr [J]. 核化学与放射化学, 2009,31(4):237.
34 Zhang Ruizhu, Zhao Junhua, Guo Zhimeng . Synjournal of SrTiO3 by double-SHS for immobilization of high level radioactive waste[J]. Chinese Journal of Rare Metals, 2009,33(1):66(in Chinese).
34 张瑞珠, 赵军华, 郭志猛 . 二次自蔓延高温合成SrTiO3固化高放废物[J]. 稀有金属, 2009,33(1):66.
35 Wen G, Zhang K, Zhang H , et al. Immobilization and aqueous durability of Nd2O3, and CeO2, incorporation into rutile TiO2[J]. Ceramics International, 2015,41(5):6869.
36 Zhang K, Wen G, Zhang H , et al. Self-propagating high-temperature synjournal of Y2Ti2O7 pyrochlore and its aqueous durability[J]. Journal of Nuclear Materials, 2015,465:1.
37 Zhang K, Wen G, Zhang H , et al. Self-propagating high-temperature synjournal of CeO2 incorporated zirconolite-rich waste forms and the aqueous durability[J]. Journal of the European Ceramic Society, 2015,35(11):3085.
38 Wen Guanjun . Self-propagating high-temperature synthesis of zirconolite-rich synroc waste forms for the immobilization of simulated actinide[D]. Mianyang:Southwest University of Science and Technology, 2016(in Chinese).
38 文冠军 . 自蔓延高温合成富钙钛锆石型人造岩石及其对模拟锕系核素固化性能研究[D]. 绵阳:西南科技大学, 2016.
39 Sengupta P. A review on immobilization of phosphate containing high level nuclear wastes within glass matrix-present status and future challenges[J].Journal of Hazardous Materials, 2012, 235-236:17.
40 Liu Weiping, Gao Zhen, Fan Chengrong , et al. Investigation report on French vitrification technology[J]. Radiation Protection, 2014,34(6):404(in Chinese).
40 柳伟平, 高振, 范承蓉 , 等. 法国高放废液玻璃固化技术最新进展[J]. 辐射防护, 2014,34(6):404.
41 Buelt J L, Timmerman C L, Oma K H , et al. In situ vitrification of transuranic wastes: An updated systems evaluation and applications assessment[R].Pacific Northwest Lab.Richland, WA(USA), 1987: 1.
42 Mao Xianhe, Qin Zhigui, Wu Bin . Composition and structure analysis of simulated radioactive waste from immobilized with thermit by self-propagating high temperature synjournal[J]. Journal of the Chinese Ceramic Society, 2010,38(2):310(in Chinese).
42 毛仙鹤, 秦志桂, 武斌 . 铝热剂SHS合成模拟核废物固化产物的组成结构分析[J]. 硅酸盐学报, 2010,38(2):310.
43 Mao Xianhe, Yuan Xiaoning, Qin Zhigui , et al. Physicochemical properties of simulated radioactive waste formed with cerium[J].Journal of the Chinese Ceramic Society,2012(1):131(in Chinese).
43 毛仙鹤, 袁晓宁, 秦志桂 , 等. 铈模拟放射性废物固化体的物理化学性质[J].硅酸盐学报,2012(1):131.
44 Ojovan M I, Lee W E . Self sustaining vitrification for immobilisation of radioactive and toxic waste[J]. Glass Technology-European Journal of Glass Science and Technology Part A, 2003,44(44):218.
45 Mao X, Qin Z, Yuan X , et al. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synjournal[J]. Journal of Nuclear Materials, 2013,443(1-3):428.
46 Zhang Songlin, Zhang Qingming, Qin Zhigui , et al. Simulating experiments of solidification of sandy soil contaminated with actinides by SHS method of thermite[J]. Bulletin of the Chinese Ceramic So-ciety, 2010,29(1):253(in Chinese).
46 张松林, 张庆明, 秦志桂 , 等. 锕系核素污染沙土的铝热剂SHS固化模拟实验[J]. 硅酸盐通报, 2010,29(1):253.
47 Laverov N P , Omel’Yanenko B I, Yudintsev S V, et al. Glasses for immobilization of low-and intermediate-level radioactive waste[J]. Geology of Ore Deposits, 2013,55(2):71.
48 Liu Lijun, Li Jinying, Qie Dongsheng . Dependence of sulfate solubi-lity on waste glass composition during the vitrification of high level wastes[J]. Journal of Nuclear and Radiochemistry, 2009,31(2):290(in Chinese).
48 刘丽君, 李金英, 郄东生 . 高放废物玻璃固化过程中玻璃组成对硫酸盐溶解度的影响[J]. 核化学与放射化学, 2009,31(2):290.
49 International Atomic Energy Agency ( IAEA). Characterization, treatment and conditioning of radioactive graphite from decommissioning of nuclear reaction[M]. Austria,Vienna:IAEA, 2006.
50 Zheng Bowen, Li Xiaohai, Zhou Lianquan , et al. Research progress in treatment and disposal of radioactive graphite waste[J].Radiation Protection Bulletin,2012(3):32(in Chinese).
50 郑博文, 李晓海, 周连泉 , 等. 放射性废石墨的处理处置现状[J].辐射防护通讯,2012(3):32.
51 Zheng Bowen, Li Xiaohai, Wang Peiyi . Progress in the incineration treatment research of waste radioactive graphite[J]. Radiation Protection Bulletin, 2011,31(1):36(in Chinese).
51 郑博文, 李晓海, 王培义 . 放射性废石墨的焚烧处理[J]. 辐射防护通讯, 2011,31(1):36.
52 陈梦君, 卢喜瑞, 崔春龙 , 等. 核退役放射性石墨处理处置研究进展[ C]∥废物地下处置学术研讨会.杭州, 2010.
53 Deng Junxian, Wu Zhongyao, Xie Xiaolong , et al. Treatment and disposal of waste graphite from nuclear facility decommissioning[J].Nuclear Safety,2008(3):49(in Chinese).
53 邓浚献, 吴仲尧, 谢小龙 , 等. 核设施退役废石墨的处理与处置[J].核安全,2008(3):49.
54 Yarmolenko O A . Development of technology for high-level radwaste treatment to ceramic matrix by method of self-propagating high-temperature synjournal[J]. International Journal of Nuclear Energy Science & Technology, 2006,2(1):144.
55 Su Sijin, Ding Yi, Zhao Yanhong , et al. Leaching resistance of simulated radioactive graphitewaste forms prepared by SHS[J].Journal of Wuhan University of Technology,2014(6):10(in Chinese).
55 苏思瑾, 丁艺, 赵彦红 , 等. SHS制备模拟放射性石墨固化体抗浸出性能研究[J].武汉理工大学学报,2014(6):10.
56 Su Sijin, Lu Xirui, Chen Mengjun , et al. Preliminary study on treatment of simulated radioactive graphite containing actinides by SHS method[J].Radiation Protection,2013(2):91(in Chinese).
56 苏思瑾, 卢喜瑞, 陈梦君 , 等. 用自蔓延高温合成技术( SHS)处理模拟含锕系元素的放射性石墨的初步研究[J].辐射防护,2013(2):91.
57 Lu X, Dong F, Chen M , et al. Self-propagating high-temperature synjournal of simulated An 3+-contained radioactive graphite in N2 atmosphere [J]. Energy Procedia, 2014,39:365.
58 Lu Xirui, Chen Mengjun, Su Sijin , et al. SHS technology for immobilizing radioactive graphite containing 90Sr [J]. Journal of Wuhan University of Technology, 2012,34(8):16(in Chinese).
58 卢喜瑞, 陈梦君, 苏思瑾 , 等. SHS法处理 90Sr放射性石墨研究 [J]. 武汉理工大学学报, 2012,34(8):16.
59 苏思瑾, 董发勤, 卢喜瑞 , 等. 模拟含An 4+放射性石墨在N2气氛中的SHS处理研究 [ C]∥全国矿物科学与工程学术研讨会.秦皇岛, 2012: 163.
[1] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[2] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[3] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[4] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[5] 李军辉, 廖至金, 李志君, 廖双泉, 于人同. 羧基官能化聚丁二烯:点击化学合成及对环氧树脂的固化机理[J]. 材料导报, 2018, 32(6): 983-986.
[6] 李洪峰, 曲春艳, 王德志, 刘仲良, 顾继友, 张杨. 短切玻纤增强PEKK与BDM/DABPA共混体系固化反应动力学及断裂韧性[J]. 材料导报, 2018, 32(6): 971-976.
[7] 耿安东, 朱永昌, 崔竹, 张浩, 竹含真, 韩勖, 霍冀川. 不同晶核剂对硼硅酸盐钙钛锆石固化体析晶行为及化学稳定性的影响[J]. 材料导报, 2018, 32(22): 3979-3983.
[8] 杨卓鸿, 叶希韵, 黄家健, 梁斌, 邝少杰, 袁腾. 桐油基紫外光固化材料体系构建的研究进展[J]. 材料导报, 2018, 32(21): 3831-3838.
[9] 余周辉,赵培仲,胡芳友. ES/CEP共混树脂紫外光固化行为及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 263-267.
[10] 罗忠涛,刘垒,康少杰,王亚洲,杨久俊. 地聚合物固化/稳定有毒重金属及作用机理研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1834-1841.
[11] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[12] 刘守庆, 郝旭涛, 周新涛, 贾庆明. 钙系磷酸盐化学键合材料的制备及其固化重金属研究*[J]. 《材料导报》期刊社, 2017, 31(4): 126-130.
[13] 张 薇,肖国庆,丁冬海. 硼砂对自蔓延高温合成ZrB2粉体的影响[J]. 《材料导报》期刊社, 2017, 31(24): 125-128.
[14] 傅明娇,杨海林,吴传明,张 影,尤 超,钱觉时. 温度对含模拟α-高放核废液的磷酸镁水泥固化体性能的影响[J]. 《材料导报》期刊社, 2017, 31(24): 86-90.
[15] 方晟,黄雪峰,张彭成,周俊鹏,郭楠. 电场改性水玻璃固化黄土机理研究*[J]. 材料导报编辑部, 2017, 31(22): 135-141.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed