Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2109-2118    https://doi.org/10.11896/cldb.19010222
  材料与可持续发展(二)-材料绿色制造与加工* |
无铅环保黄铜研究新进展
杨超1,陶鲭驰1,丁言飞2
1 华南理工大学国家金属材料近净成形工程技术研究中心,广州 510640
2 广东华艺卫浴实业有限公司,江门 529321
Recent Progress in Lead-free Environmentally-friendly Brasses
YANG Chao1, TAO Qingchi1, DING Yanfei2
1 National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640
2 Guangdong Huayi Plumbing Fittings Industry Co., Ltd., Jiangmen 529321
下载:  全 文 ( PDF ) ( 12094KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于优异的力学性能、耐蚀性能、铸造性能和成形性能,黄铜被广泛应用于卫浴、电工电气、装备制造等诸多产业。通常,黄铜中需加入约3%(质量分数)Pb来改善其切削加工性能。Pb在Cu-Zn合金中以独立相存在,由于Pb质软、脆性大且熔点低,可发挥断屑、润滑和降温作用,从而改善黄铜的切削性能。然而,Pb属于有毒元素,在其生产、加工和使用过程中均会造成环境污染。尤其是当铅黄铜用于与水环境接触的产品时,Pb会以离子形式析出溶于水。Pb中毒会损害人体的血液、神经、消化和生殖系统,极大危害人体健康。鉴于此,研发对人体和环境无毒、无害的无铅环保黄铜成为亟待解决的重要课题。
根据铅黄铜的易切削机理可知,新型无铅环保黄铜合金要获得优异的切削性能,则其基体上应存在细小弥散的质点,在切削加工时发挥类似Pb质点的断屑作用。按照质点的存在形式,有益于黄铜合金切削性能的元素可分为微量固溶于Cu并与Cu形成共晶、不固溶于Cu但与Cu形成化合物以及部分固溶于Cu且与Cu形成化合物的三类元素。目前,国内外对第一类替代元素中的Bi等元素进行了系统研究,但这些元素资源有限,且大多有毒,使其难以推广应用;对第二类替代元素的研究也取得了一些成果,然而其易氧化烧损或形成有害夹杂,影响材料的制备和加工。针对第三类替代元素来改善黄铜合金的切削性能则开展了大量研究,如以Sb代Pb、以Mg代Pb和以Si代Pb。然而,Sb与Pb一样属于有毒元素;无铅镁黄铜在熔炼过程中易发生吸气、氧化等铸造缺陷,使熔炼工艺复杂。Si的锌当量系数较大,且资源丰富,无毒害作用,通过调控其含量易于调控无铅硅黄铜的组织结构,且硅黄铜熔炼工艺简单,有望彻底实现黄铜合金“无铅化”,这对保护人体健康与生态环境、节约资源均有积极意义,实现了绿色制造。
本文结合无铅黄铜第三组元的选择特性和锌当量规则,从组织结构、切削性能和耐腐蚀性能等三个方面综述了国内外无铅环保易切削黄铜合金的研究进展,详细分析了Si、Al代替Pb对合金的综合影响,重点介绍了无铅环保易切削硅黄铜合金的成分与组织设计、切削性能和生产工艺,最后对未来的研究趋势进行了展望,希望能在无铅环保易切削黄铜的开发及应用中起到有益的指导作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨超
陶鲭驰
丁言飞
关键词:  无铅黄铜  锌当量  综合性能  切削性能    
Abstract: Due to excellent mechanical properties, corrosion resistance, casting properties and formability, brasses alloys are widely used in many industries such as sanitary ware, electronic product and equipment manufacturing. Generally, 3wt% Pb is added into brasses alloys to improve their cutting performance. As a soft and brittle phase with relative low melting point, Pb acts as a separate phase in the Cu-Zn binary alloy, which can play roles of chip breaking, lubrication and cooling, and thus improve the cutting performance of brasses alloys. However, Pb is a toxic element and can cause environmental pollution during its production, processing and usage processes. Especially, when lead brasses are used as products contacting with water environment, Pb ions are easily precipitated from the matrix. Lead poisoning can damage the blood, nerves, digestion and reproductive systems of the human body. On this account, the development of lead-free environmentally-friendly brasses becomes an urgent and significant problem.
According to the easy-cutting mechanism of lead brasses, in order to obtain excellent cutting performance, new lead-free environmentally-friendly brasses alloys should have dispersed fine particles in the matrix, which can play a role of chip breaking like Pb particles during cutting processing. According to the existing modes of the particles, the elements beneficial to the cutting performance of brasses alloys can be classified into three types, minor solid-soluble ones in Cu that can form eutectics with Cu, insoluble ones in Cu that can form compounds with Cu, and partial solid-soluble ones in Cu that can form compounds with Cu. Currently, systematic researches have been carried out on the first type of substitute elements such as Bi. However, these elements are of limited resources and are mostly toxic. Some research results have been obtained on the second type of substitute elements, which are easily oxidized and formed harmful inclusions, thus increasing the difficulty in the preparation and processing of these materials. A large number of studies have been conducted to improve the cutting performance of brasses alloys by the third type of substitute elements, such as Pb replacer of Sb, Mg and Si. Unfortunately, Sb is a toxic element like Pb; lead-free magnesium brasses are easy to bring in inhaling, oxidizing and other casting defects, making its smelting process very complicated. The element Si has many advantages of large zinc equivalent coefficient, rich resource and non-toxic effect. Tailoring Si content is easy to regulate microstructures of lead-free silicon brasses with simple smelting process. As such, silicon brasses are expected to realize the complete lead-free in brasses products, which is of great significance in protecting human health, ecological environment and realizing green manufacturing.
In summary, based on the selection characteristics of the third component elements and the zinc equivalent rule, this paper reviewed the research progress in lead-free environmentally-friendly free-cutting brasses, including microstructure, cutting performance and corrosion resistance. Meanwhile, the effects of Si and Al additions on microstructure and properties of developed brasses are analyzed. Particularly, the composition and microstructure design, cutting performance and production process of lead-free environmentally-friendly free-cutting silicon brasses are underlined. Finally, prospects for future research trends are pointed out. The progress reviewed herein may provide significant insight into the development and application of lead-free environmentally-friendly free-cutting brasses.
Key words:  lead-free brasses    zinc equivalent    comprehensive performance    cutting performance
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  TG146.1+1  
基金资助: 广东省应用型科技研发专项重大项目(2016B090931002);广东省公益研究与能力建设专项资金项目(2014A010105020)
作者简介:  杨超,教授,博导,华南理工大学金属材料制备成形及装备研究所(国家金属材料近净成形工程技术研究中心)所长,“新世纪优秀人才计划”入选者,中国材料研究学会青年工作委员会常务理事,中国金属学会非晶合金分会委员,美国矿物与金属材料学会会员,任国家科技部重点基础材料专项评审专家、国家自然科学基金项目评审专家、国防科工局协作配套中心评审专家、广东省科技厅评审专家。主持国家自然科学基金面上、国防基础科研计划、总装预研等国家级项目11项,在Acta Mater.Scripta Mater.等期刊发表SCI论文90余篇,申请发明专利38项(国际PCT专利5项,授权25项);编撰英文专著一部(副主编)。研究方向为新型钛合金、无铅黄铜合金、放电等离子烧结和增材制造等。
引用本文:    
杨超, 陶鲭驰, 丁言飞. 无铅环保黄铜研究新进展[J]. 材料导报, 2019, 33(13): 2109-2118.
YANG Chao, TAO Qingchi, DING Yanfei. Recent Progress in Lead-free Environmentally-friendly Brasses. Materials Reports, 2019, 33(13): 2109-2118.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010222  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2109
1 García P, Rivera S, Palacios M, et al. Engineering Failure Analysis, 2010, 17(4), 771.2 Li S, Kondoh K, Imai H, et al. Powder Technology, 2011, 205(1-3), 242.3 Atsumi H, Imai H, Li S, et al. Materials Science and Engineering A, 2011, 529, 275.4 Nobel C, Klocke F, Lung D, et al. Procedia CIRP, 2014, 14, 95.5 Schultheiss F, Johansson D, Bushlya V, et al. Journal of Cleaner Production, 2017, 149, 366.6 Zhu Q L, Zhang X M, Chen J J, et al. Journal of Materials Science and Engineering, 2011, 29(2), 308 (in Chinese).朱权利, 张先满, 陈家坚, 等.材料科学与工程学报, 2011, 29(2), 308.7 Vilarinho C, Davim J P, Soares D, et al. Journal of Materials Processing Technology, 2005, 170(1-2), 441.8 Huang J S, Pen C Q, Zhang S Q, et al. The Chinese Journal of Nonferrous Metals, 2006, 16(9), 1486 (in Chinese).黄劲松, 彭超群, 章四琪, 等. 中国有色金属学报, 2006, 16(9), 1486.9 Zhu Q L, Zhang X M, Luo L S, et al. The Chinese Journal of Nonferrous Metals, 2012, 22(5), 1421 (in Chinese).朱权利, 张先满, 罗良颂, 等. 中国有色金属学报, 2012, 22(5), 1421.10 Toulfatzis A, Pantazopoulos G, David C, et al. Metals, 2018, 8(8), 575.11 Chen X, Hu A M, Li M, et al. Journal of Alloys and Compounds, 2008, 460(1-2), 478.12 Ma J, Wei Y M, Guo B L, et al. Chinese Journal of Public Health, 2009, 25(3), 369 (in Chinese).马静, 魏益民, 郭波莉, 等.中国公共卫生, 2009, 25(3), 369.13 Yao Z Q. Studies of Trace Elements and Health, 2011, 28(5), 67 (in Chinese).姚智卿.微量元素与健康研究, 2011, 28(5), 67.14 St lnacke E, Claesson E, Obitz C, et al. Materials Science and Technology, DOI: 10.1080/02670836.2018.1489619.15 Ng D Q, Lin Y P. International Journal of Environmental Research and Public Health, 2016, 13(3), 266.16 Vargas I, Fischer D, Alsina M, et al. Materials (Basel), 2017, 10(9), 1036.17 Ye W B. Research on low pressure die casting process for environmentally-friendly lead-free silicon brass faucet. Master's Thesis, South China University of Technology, China, 2018 (in Chinese).叶文兵. 环保无铅硅黄铜水龙头低压铸造工艺研究. 硕士学位论文, 华南理工大学, 2018.18 La Fontaine A, Keast V J. Materials Characterization, 2006, 57(4), 424.19 Wang J, Yan J, Tang S Y, et al. Special Casting & Nonferrrous Alloys, 2010, 30(11), 1072 (in Chinese).王均, 闫静, 唐生渝, 等. 特种铸造及有色合金, 2010, 30(11), 1072.20 Chang L S, Straumal B, Rabkin E, et al. Acta Materialia, 2007, 55(1), 335.21 Matsumoto T, Furuya M, Okubot T. Journal of the Japan Copper and Brass Research Association, 2002, 41(1), 76.22 Jang Y, Kim S, Han S. Metallurgical & Materials Transactions A, 2005, 36(4), 1060.23 Yan J. The research and development of the environmental friendly unleaded free-cutting brass and its property investigation. Master's Thesis, Sichuan University, China, 2007 (in Chinese).闫静. 环境友好无铅易切削黄铜的开发及性能研究. 硕士学位论文, 四川大学, 2007.24 Xiao L R, Qin J L, Yi D Q, et al. Special Casting & Nonferrrous Alloys, 2008, 28(4), 321 (in Chinese).肖来荣, 覃静丽, 易丹青, 等.特种铸造及有色合金, 2008, 28(4), 321.25 Liu B X. Nonferrous Metals Science and Engineering, 2011, 2(1), 35 (in Chinese).刘柏雄.有色金属科学与工程, 2011, 2(1), 35.26 Shu X P, Xiao L R, Yi D Q, et al. Foundry, 2008, 57(1), 59 (in Chinese).舒学鹏, 肖来荣, 易丹青, 等.铸造, 2008, 57(1), 59.27 Xiao L R, Shu X P, Yi D Q, et al. Journal of Central South University (Science and Technology), 2009, 40(1), 117 (in Chinese).肖来荣, 舒学鹏, 易丹青, 等.中南大学学报:自然科学版, 2009, 40(1), 117.28 Xiao L R, Shu X P, Yi D Q, et al. Transactions of Nonferrous Metals Society of China, 2007, 17(A02), 1055.29 Zhu Q L, Wu W D, Liu K Z, et al. Science in China, 2009, 52(8), 2172.30 He M C, Wan H Y. Progress in Chemistry, 2004, 16(1), 131 (in Chinese).何孟常, 万红艳.化学进展, 2004, 16(1), 131.31 Wu F C, Zheng J, Pan X L, et al. Advances in Earth Science, 2008, 23(4), 350 (in Chinese).吴丰昌, 郑建, 潘响亮, 等.地球科学进展, 2008, 23(4), 350.32 Xiao L R, Zhang L H, Liu Y, et al. Journal of Materials Engineering, 2010, 38(9), 10(in Chinese).肖来荣, 张路怀, 刘彦, 等.材料工程, 2010, 38(9), 10.33 Wu W D, Zhu Q L, Liu K Z, et al. Special Casting & Nonferrrous Alloys, 2008, 28(11), 898 (in Chinese).吴维冬, 朱权利, 刘楷周, 等.特种铸造及有色合金, 2008, 28(11), 898.34 Huang J S, Peng C Q, Zhang S Q, et al. Journal of Materials Science and Engineering, 2006, 24(6), 854 (in Chinese).黄劲松, 彭超群, 章四琪, 等.材料科学与工程学报, 2006, 24(6), 854.35 Li W. Research on the microstructure and properties of unleaded P-Mg-Ca brass. Master's Thesis, South China University of Technology, China, 2013 (in Chinese).李微. 无铅磷镁钙黄铜的制备工艺及组织性能研究. 硕士学位论文, 华南理工大学, 2013.36 Kim J K, Rohatgi P K. Metallurgical & Materials Transactions B, 1999, 30(3), 369.37 Kim J K, Rohatgi P K, Choi J O, et al. Metals & Materials International, 2005, 11(4), 333.38 Liu J P, Yang X J, Zeng L F, et al. Journal of Nanchang University (Engineering & Technology), 2014, 36(4), 373 (in Chinese).刘锦平, 杨湘杰, 曾龙飞, 等.南昌大学学报(工科版), 2014, 36(4), 373.39 Xue Y Y, Tang J C, Zhuo H O, et al. Acta Metallurgica Sinica, 2015, 51(2), 223 (in Chinese).薛滢妤, 唐建成, 卓海鸥, 等.金属学报, 2015, 51(2), 223.40 Li S, Pen T, Zhang Z L, et al. Materials Science and Engineering of Powder Metallurgy, 2012, 17(1), 89 (in Chinese).李顺, 彭韬, 张仲灵, 等. 粉末冶金材料科学与工程, 2012, 17(1), 89.41 Imai H, Kosaka Y, Kojima A, et al. Powder Technology, 2010, 198(3), 417.42 Kestursatya M, Kim J K, Rohatgi P K. Materials Science & Engineering A, 2003, 339(1), 150.43 He Y Y, Zhou C, Li H Y, et al.Journal of Iron and Steel Research, 2014, 26(4), 59(in Chinese).贺莹莹, 周铖, 李鸿友, 等. 钢铁研究学报, 2014, 26(4), 59.44 Maruyama T, Abe H, Hirose K, et al.Materials Transactions, 2012, 53(2), 380.45 Yang Y. Microstructure and properties of lead-free free-cutting silicon-brass. Master's Thesis, Southeast University, China, 2013 (in Chinese).杨媛. 易切削无铅硅黄铜的组织和性能.硕士学位论文, 东南大学, 2013.46 Sheng Z X. Manufacturing process, microstructure and properties of sulfide-dispersed lead-free brass. Master's Thesis, Southeast University, China, 2015 (in Chinese).圣兆兴. 硫化物黄铜的制备工艺、显微组织和性能研究.硕士学位论文, 东南大学, 2015.47 Zhu Q L,Li W, Zhou J R, et al. Special Casting & Nonferrous Alloys, 2012, 32(6), 580 (in Chinese).朱权利, 李微, 周建仁,等. 特种铸造及有色合金, 2012, 32(6), 580.48 Zhang X M. Research on the microstructure and properties of unleaded P-Ca brass. Master's Thesis, South China University of Technology, China, 2011 (in Chinese).张先满. 无铅磷钙黄铜组织与性能研究.硕士学位论文, 华南理工大学, 2011.49 Wang X, Liu Q, Cai J H, et al. Journal of Xi'an Technological University, 2011, 31(4), 352 (in Chinese).王鑫, 刘庆, 蔡洎华, 等.西安工业大学学报, 2011, 31(4), 352.50 Wang X X, Su Y, Lü X, et al. Metallic Functional Materials, 2012, 19(1), 39 (in Chinese).汪小霞, 苏勇, 吕雪, 等.金属功能材料, 2012, 19(1), 39.51 Taha M A, El-Mahallawy N A, Hammouda R M, et al. Ain Shams Engineering Journal, 2012, 3(4), 383.52 Chen Y S, Liu W J, Zhu Z Y, et al. Nonferrous Metals Science and Engineering, 2014, 5(3), 32 (in Chinese).陈一胜, 刘位江, 朱志云, 等.有色金属科学与工程, 2014, 5(3), 32.53 Xu Y, Liu P, Liu X K, et al. Hot Working Technology, 2015, 44(4), 100(in Chinese).许跃, 刘平, 刘新宽, 等.热加工工艺, 2015, 44(4), 100.54 Oishi, Keiichiro. U.S. patent application, US6413330, 2002.55 Uwe H, Wolfgang D, Doris H B, et al. U.S. patent application, US7354489, 2008.56 Pang J S, Cao B, Chen M, et al. Materials for Mechanical Engineering, 2012, 36(5), 73(in Chinese).庞晋山, 曹标, 陈明, 等. 机械工程材料, 2012, 36(5), 73.57 Zhao Z F, Qi J G, Wang J Y, et al. Heat Treatment of Metals, 2014, 39(12), 126(in Chinese).赵作福, 齐锦刚, 王家毅, 等.金属热处理, 2014, 39(12), 126.58 Zhao Z F, Qi J G, Wang J Z, et al. Journal of South China University of Technology (Natural Science Edition), 2015, 43(7), 28 (in Chinese).赵作福, 齐锦刚, 王建中, 等.华南理工大学学报 (自然科学版), 2015, 43(7), 28.59 Cai W, Qiu G B, Li A Y, et al. Special Casting & Nonferrous Alloys, 2014, 34(8), 868(in Chinese).蔡薇, 邱光斌, 李安运, 等. 特种铸造及有色合金, 2014, 34(8), 868.60 Qiu G B. Heat Treatment, 2016, 31(5), 26(in Chinese).邱光斌.热处理, 2016, 31(5), 26.61 Zhu Q L, Tian X P, Yang C. Foundry, 2017, 66(7), 691(in Chinese).朱权利, 田小平, 杨超. 铸造, 2017, 66(7), 691.62 Suksongkarm D, Rojananan S, Rojananan S. Advanced Materials Research, 2013, 802, 179.63 Wang Y C, Zhang X L, Liu Y, et al. Shanghai Nonferrous Metals, 2011, 32(3), 111(in Chinese).王跃臣, 张兴利, 刘云, 等.上海有色金属, 2011, 32(3), 111.64 Liu P X, Liu X T, Liu H N. The process handbook of copper and copper alloy, Chemical Industry Press, China, 2008 (in Chinese).刘培兴, 刘晓瑭, 刘华鼐.铜与铜合金加工手册, 化学工业出版社, 2008.65 Lu J P, Li X H. Metallographic atlas of processed copper and copper alloy, Central South University Press, China, 2010 (in Chinese).路俊攀, 李湘海.加工铜及铜合金金相图谱, 中南大学出版社, 2010.66 Ding Z. Composition design, microstructure and properties of lead-free si-licon brass with free-cutting property. Master's Thesis, South China University of Technology, China, 2017 (in Chinese).丁智. 无铅易切削硅黄铜成分设计与组织性能研究. 硕士学位论文, 华南理工大学, 2017.67 Yang C, Ding Z, Tao Q C, et al. Materials Science and Engineering: A, 2018, 723, 296.68 Yang C, Ding Z, Ding Y F, et al. U.S. patent application, US2018-0148813A1, 2018.69 Zhu Q L, Liu K Z, Wu W D, et al. New Technology & New Process, 2009(6), 84(in Chinese).朱权利, 刘楷周, 吴维冬, 等.新技术新工艺, 2009(6), 84.70 Chen J Q, Liu Z X, Ni Z F, et al. Foundry, 2008, 57(4), 378(in Chinese).程巨强, 刘志学, 倪自飞, 等. 铸造, 2008, 57(4), 378.71 Wang J H, Jiang X X, Li S Z. Chinese Journal of Materials Research, 1999, 13(1), 1(in Chinese).王吉会, 姜晓霞, 李诗卓.材料研究学报, 1999, 13(1), 1.72 Tan R S, Jiang J Q, Sun L C. Journal of the Chinese Rare Earth Society, 1995, 13(s1), 457(in Chinese).谈荣生, 蒋建清, 孙连超. 中国稀土学报, 1995, 13(s1), 457.73 Wei X J, Xu X Z, Feng F L, et al. Rare Metals and Cemented Carbides, 1992, 20(2), 5(in Chinese).魏绪钧, 徐秀芝, 冯法伦, 等. 稀有金属与硬质合金, 1992, 20(2), 5.74 Chen B X, Song J, Zhong J H. Foundry, 2006, 55(5), 516(in Chinese).陈丙璇, 宋婧, 钟建华. 铸造, 2006, 55(5), 516.75 Yang Y C. Study on the machinability of silicon brasses with different zinc equivalents. Master's Thesis, South China University of Technology, China, 2019 (in Chinese).杨玉川. 不同锌当量硅黄铜切削性能研究. 硕士学位论文, 华南理工大学, 2019.76 Wang L. Experimental study on titanium alloy cutting process using surface micro-textured cutting tool. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2012 (in Chinese).王亮. 表面微织构刀具切削钛合金的试验研究. 硕士学位论文, 南京航空航天大学, 2012.77 Zhang J S. Research on the cutting mechanism of micro-textured tool. Master's Thesis, Hefei University of Technology, China, 2015 (in Chinese).张俊生. 刀具表面微织构切削机理研究. 硕士学位论文, 合肥工业大学, 2015.78 Yang C, Yang Y C, Liang L, et al. U.S. patent, PCT/CN2018/106848, 2018.79 Yang C, Ye W B, Yang Y C, et al. Journal of Materials Engineering and Performance, 2018, 27(10), 5478.80 Zhao Y J. Selective laser melting technology of high-strength silicon brass alloy and its microstructure and mechanical properties. Master's Thesis, South China University of Technology, China, 2019 (in Chinese).赵延杰. 高强硅黄铜合金的选区激光熔化工艺与组织性能研究. 硕士学位论文, 华南理工大学, 2018.81 Yang C, Zhao Y J, Li Y Y. U.S. patent, PCT/CN2017/110097, 2018.82 Yang C, Zhao Y J, Kang L M, et al. Materials Letters, 2018, 210, 169.
[1] 李云涛, 晏华, 余荣升, 王群. 基于功效系数法的复合相变材料综合性能评价研究*[J]. CLDB, 2017, 31(8): 135-139.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed