Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7183-7189    https://doi.org/10.11896/cldb.19100143
  金属与金属基复合材料 |
航空零部件加工表面完整性
初铭强1, 丁仁根1, 张书彦1,2, 郑江鹏1, 张楠1
1 东莞材料基因高等理工研究院,东莞 523808
2 松山湖材料实验室,东莞 523808
Surface Integrity for Machining Aerospace Parts
CHU Mingqiang1, DING Rengen1, ZHANG Shuyan1,2, ZHENG Jiangpeng1, ZHANG Nan1
1 Centre of Excellence for Advanced Materials, Dongguan 523808, China
2 Materials Laboratory of Songshan Lake, Dongguan 523808, China
下载:  全 文 ( PDF ) ( 3052KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 航空航天工业中, 钛合金和镍基合金是飞机结构和发动机部件的重要金属材料。这些关键结构部件的制造需达到高可靠性要求,表面完整性是用于评价精加工表面质量的最相关参数之一。钛合金和镍基合金在加工过程中产生的残余应力和表层变化对其安全性和可持续性至关重要。本文综述了钛合金和镍基合金表面完整性的研究进展,并报道了许多不同类型的表面完整性问题,通过研究表面残余应力、白层和加工硬化层以及微观结构的改变,以提高最终产品的表面质量。许多参数影响工件的表面质量,其中切削速度、进给速度、切削深度、刀具几何形状和加工工艺、刀具磨损和工件性能是最值得研究的问题之一。为了更好地理解加工引入的表面完整性问题,需要通过实验和经验研究以及基于分析和有限元建模的方法。然而,在目前的技术水平上,仍然缺乏一种基于物理过程的、适用于工业过程的全面、系统的方法。研究结果表明,在解释多种参数对钛合金和镍基合金加工效果的影响的同时,需要建立与可靠实验相一致的预测物理模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
初铭强
丁仁根
张书彦
郑江鹏
张楠
关键词:  钛合金  镍基合金  表面完整性  表面缺陷  表面残余应力    
Abstract: In the aerospace industry, titanium and nickel-based alloys are important metal materials for aircraft structures and engine components. These critical structural components are manufactured to meet high reliability requirements, and surface integrity is one of the most relevant parameters for evaluating the quality of finished surfaces. The residual stresses and surface changes produced by titanium and nickel-based alloys during processing are critical to their safety and sustainability. This paper reviews the research progress on the surface integrity of titanium alloys and nickel-based alloys, and reports on many different types of surface integrity problems, including the study of surface residual stress, white layer and work hardened layer, and microstructure changes to improve the final surface quality of the product. Many parameters affect the surface qua-lity of the workpiece, where cutting speed, feed rate, depth of cut, tool geometry and machining process, tool wear and workpiece performance are among the most worthwhile issues. In order to better understand the surface integrity introduced by processing, experimental and empirical studies as well as methods based on analysis and finite element modeling are required. However, at the current state of the art, there is still a lack of a comprehensive, systematic approach based on physical process that is suitable for industrial processes. The results show that while explaining the effects of various parameters on the processing of titanium alloys and nickel-based alloys, it is necessary to establish a predictive physical model consistent with reliable experiments.
Key words:  titanium alloy    nickel-based alloy    surface integrity    surface defects    surface residual stress
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TG58  
基金资助: 广东省创新创业团队引进计划(2016ZT06G025);广东省自然科学基金(2017B030306014)
作者简介:  初铭强,研究员,1987年毕业于上海同济大学,后在英国伯明翰大学获得博士学位,曾在英国材料领域工作近20年,主要从事材料研发、微观结构表征、工艺性能验证等工作,发表论文40多篇。2013年回国,受聘于中国商飞海外特聘专家,上海浦江人才计划及上海重大人才工程入选者。现任东莞材料基因高等理工研究院材料性能研究所副所长。主持及参与各种科研项目和工业项目二十多个。主编出版大飞机系列丛书之一《飞机材料与结构检测技术》。
张书彦,女,牛津大学工程学博士,博士研究生导师,东莞材料基因高等理工研究院院长,广东省珠江人才计划引进创新创业团队带头人、广东省自然科学杰出青年基金获得者。现兼任英国公开大学客座教授、英国科学技术设备理事会顾问、MECASENS国际科技顾问委员会、全国残余应力学术委员会委员、The European Physical Journal Plus期刊编辑,曾任英国散裂中子源工程实验室首席科学家、英国散裂中子源工程项目评委会成员、欧洲散裂中子源科学技术顾问委员会委员、日本散裂中子源项目评委、广东省科技项目评委、英国创新金属处理博士站技术委员会委员等。15年来一直从事中子和X射线衍射法应用于工程材料的残余应力分析和微观力学性能研究,并且在中国散裂中子源和英国散裂中子源分别主持了一台中子谱仪的设计、技术改进和建设。发表学术论文100余篇以上,SCI收录60余篇,Acta Materialia 10篇。
引用本文:    
初铭强, 丁仁根, 张书彦, 郑江鹏, 张楠. 航空零部件加工表面完整性[J]. 材料导报, 2021, 35(7): 7183-7189.
CHU Mingqiang, DING Rengen, ZHANG Shuyan, ZHENG Jiangpeng, ZHANG Nan. Surface Integrity for Machining Aerospace Parts. Materials Reports, 2021, 35(7): 7183-7189.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100143  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7183
1 Lai M Q,Hu Z H,Hu Y X, et al. Application of Laser, 2019, 39(1), 13(in Chinese).
赖梦琪,胡宗浩,胡永祥,等.应用激光, 2019, 39(1), 13.
2 Griffith B. Manufacturing surface technology-surface integrity and functional performance, Penton Press, London, 2001.
3 Zhang X Q, Zhang X P, Srivastava A K. Machine Design and Research, 2012, 28(4), 92(in Chinese).
张相琴,张雪萍,Srivastava A K.机械设计与研究, 2012, 28(4), 92.
4 Yang S C.Action mechanism of cutting tool edge and application in precision machining Ti6Al4V. Ph.D. Thesis, Harbin University of Science and Technology, China, 2011(in Chinese).
杨树财.精密切削钛合金Ti6Al4V刀具刃口作用机理及应用研究. 博士学位论文,哈尔滨理工大学,2011.
5 Ma C, Gao M, Sun X F, et al. Tool Engineering, 2018, 52(7), 21(in Chinese).
马超,高铭,孙小峰,等.工具技术, 2018, 52(7), 21.
6 Sharman A R C, Hughes J J, Ridgway K. Machining Science and Technology, 2004,8(3),399.
7 Kitagawa T, Kubo A, Maekawa K. Wear, 1997,202(2), 142.
8 Sterle W O, Li X P. Materials Science and Engineering A, 1997,238(2),357.
9 Cui C,Gu Y,Harada H, et al. Metallurgical and Materials Transactions A, 2005,36, 2921.
10 Novovic D, Dewes R C, Aspinwall D K, et al. International Journal of Machine Tools and Manufacture, 2004, 44, 125.
11 M'Saoubi R, Outeiro J C, Chandrasekaran H,et al. International Journal of Sustainable Manufacturing, 2008,1(1-2), 203.
12 Guo Y B, Li W, Jawahir I S. Machining Science and Technology, 2009,13(4), 437.
13 Pawade R S, Joshi S S, Brahmankar P K, et al. Journal of Materials Processing Technology, 2007,192-193(10), 159.
14 Pawade R S, Joshi S S, Brahmankar P K. International Journal of Machine Tools and Manufacture, 2008,48, 15.
15 Zou B, Chen M, Huang C, et al. Journal of Materials Processing Technology, 2009, 209(17), 5802.
16 Ginting A, Nouari M. International Journal of Machine Tools and Manufacture, 2009, 49(3-4), 325.
17 Che-Haron C H, Jawaid A. Journal of Materials Processing Technology, 2005,166(2), 188.
18 Yang X, Liu C R. Machining Science and Technology, 1999, 3(1), 107.
19 Sharman A R C, Hughes J I, Ridgway K. Journal of Materials Processing Technology, 2006, 173(3),359.
20 Díaz F V, Bolmaro R E, Guidobono A P M,et al. Experimental Mecha-nics, 2021,50, 205.
21 Che-Haron C H. Journal of Materials Processing Technology, 2001,118(1-3), 231.
22 Jaharah A G, Hassan C H C, Muhamad N. European Journal of Scientific Research, 2009,26, 247.
23 Ezugwu E O, Wang Z M, Okeke C I. Tribology Transactions, 1999,42(2), 353.
24 Arunachalam R M, Mannan M A, Spowage A C. International Journal of Machine Tools and Manufacture, 2004, 44(9), 879.
25 Mantle A L, Aspinwall D K. Journal of Materials Processing Technology, 2001,118(1-3), 143.
26 Thomas M, Turner S, Jackson M. Scripta Materialia, 2010,62, 250.
27 Sharman A R C, Hughes J I, Ridgway K. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2008, 222, 653.
28 Sadat A B, Reddy M Y, Wang B P. International Journal of Mechanical Sciences, 1991, 33(10), 829.
29 Coelho R T, Silva L R, Braghini J A.et al. Journal of Materials Proces-sing Technology, 2004, 148, 147.
30 Sun J, Guo Y B. Journal of Materials Processing Technology, 2009, 209(8), 4036.
31 Nurul-Amin A K M, Ismail A F, Nor Khairusshima M K. Journal of Materials Processing Technology, 2007,192-193, 147.
32 Darwish S M. Journal of Materials Processing Technology, 2000, 97,10.
33 Axinte D A, Dewes R C. Journal of Materials Processing Technology, 2002, 127(3), 325.
34 Jacobus K, DeVor R E, Kapoor S G. Journal of Manufacturing Science and Engineering, 2000,122(1), 20.
35 Hua J, Shivpuri R, Cheng X, et al. Materials Science and Engineering A, 2005,394(1-2), 238.
36 Hua D, Umbrello R S. Journal of Materials Processing Technology, 2006,171(2), 180.
37 Sridhar B R, Devananda G, Ramachandra K, et al. Journal of Materials Processing Technology, 2003,139(1-3), 628.
38 Outeiro J C, Pina J C, M'Saoubi R, et al. CIRP Annals Manufacturing Technology, 2008,57, 77.
39 Sauvage X, Le Breton J M, Guillet A, et al. Materials Science and Engineering A, 2003,362(1-2), 181.
40 Glaser D, Newby M, Polese C, et al. Materials Research Proceedings, 2018, 4, 45.
41 Warren A W, Guo Y B, Weaver M. Surface and Coatings Technology, 2005, 200(11), 3459.
42 Wyatt J E, Berry J T. Journal of Materials Processing Technology, 2006,171(1), 132.
[1] 黄雪丽, 谭君国, 张腾飞, 莫锦君, 高则翠, 钟星, 王启民. 钛合金表面TiN/CrN纳米多层薄膜的制备及耐磨、耐腐蚀性能[J]. 材料导报, 2021, 35(4): 4139-4143.
[2] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[3] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[4] 庄唯, 王耀勉, 杨换平, 剡文斌. 钛合金渗碳处理研究进展[J]. 材料导报, 2020, 34(Z2): 344-347.
[5] 许爱平, 侯继军, 董俊慧. 稀土活性剂对TC4钛合金激光焊焊接接头的影响[J]. 材料导报, 2020, 34(Z2): 348-350.
[6] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[7] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[8] 朱雪峰, 周瑜, 樊凯, 王柯. TC18钛合金固溶过程中黑斑组织的形成机理[J]. 材料导报, 2020, 34(Z1): 289-292.
[9] 郝芳, 辛社伟, 毛友川, 楼美琪, 周伟, 杜予晅, 王凯旋, 屈磊, 冯勇. 钛合金在装甲领域的应用综述[J]. 材料导报, 2020, 34(Z1): 293-296.
[10] 郭晋昌, 石玗, 耿培彪, 朱明. 激光维持等离子体钛合金表面渗氮研究进展[J]. 材料导报, 2020, 34(5): 5109-5114.
[11] 张俊喜, 易湘斌, 沈建成, 陈百明, 李保栋, 徐创文. 固溶和工作温度对TC21钛合金动态压缩性能和绝热剪切敏感性的影响[J]. 材料导报, 2020, 34(24): 24092-24096.
[12] 刘明霞, 王冬, 张文康, 畅庚榕, 刘道新, 徐可为. 喷丸强化对17-4PH不锈钢室温及高温疲劳性能的影响[J]. 材料导报, 2020, 34(22): 22124-22129.
[13] 任超, 罗军明, 陈宇海, 黄俊, 徐吉林. 喷丸对TC4合金微弧氧化涂层磨损和腐蚀行为的影响[J]. 材料导报, 2020, 34(18): 18081-18085.
[14] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. TC4合金激光熔覆材料的研究现状[J]. 材料导报, 2020, 34(15): 15132-15137.
[15] 陶博浩, 李菊, 张彦华. TA19双态组织钛合金线性摩擦焊接头的组织结构及演化行为[J]. 材料导报, 2020, 34(14): 14147-14153.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed