Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3122-3128    https://doi.org/10.11896/cldb.19070111
  金属与金属基复合材料 |
钛合金动态塑性变形过程中绝热剪切带的形成机理
黄子坤, 孙威
北京工业大学固体微结构与性能研究所,北京 100124
Formation Mechanism of Adiabatic Shear Band in Dynamic Plastic Deformation of Titanium Alloy
HUANG Zikun, SUN Wei
Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 6324KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 材料在应变速率高于102 s-1时的塑性变形被称为动态塑性变形。区别于准静态塑性变形,动态塑性变形涉及的复杂的高度局域化变形机制对材料的性能与寿命具有显著影响。绝热剪切带作为材料动态塑性变形过程中产生的特殊的变形结构,它对材料性能的影响引起了人们的高度关注。钛合金具有优良的力学性能,被用作结构材料,广泛应用于诸多行业,由于应用面广,钛合金会经常面临动态载荷产生绝热剪切带而失效,从而缩短使用寿命。因此,研究钛合金中绝热剪切带的形成机制对延长钛合金的使用寿命,改善钛合金的力学性能具有重要意义。
然而,由于动态塑性变形的瞬时性、内部应力的复杂性等,还原绝热剪切带的形成过程具有相当大的难度。同时,钛合金结构的复杂性、变形过程中相的不稳定性等因素均提高了观察其内部绝热剪切带的难度。
通过大量的实验观察与模拟计算,目前较为普遍的观点为钛合金中绝热剪切带的形成机制为动态再结晶。而动态再结晶的过程目前有四种主流的观点,分别是传统动态再结晶、连续动态再结晶、孪生动态再结晶与相变诱发动态再结晶。针对不同的动态再结晶方式,研究者们建立了基本的变形模型与理论依据,并找到了一定的实验证据。
本文通过总结近年来学者们对钛及钛合金动态塑性变形行为研究的典型成果,重点介绍了绝热剪切带的形貌与性能及其形成的不同机制。同时对钛合金中绝热剪切带的几种不同的形成机制及其研究中存在的问题进行了分析讨论,旨在为未来的研究探索提供有用的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄子坤
孙威
关键词:  钛合金  动态塑性变形  动态再结晶  绝热剪切带    
Abstract: The plastic deformation of the material is called dynamic plastic deformation when the strain rate is higher than 102 s-1. In comparison with quasi-static plastic deformation, the dynamic plastic deformation involves highly localized deformation and more complex mechanisms which can have a significant impact on the properties and life of materials. As a special deformation structure in the process of dynamic plastic deformation, adiabatic shear band has attracted great attention because of its influence on material properties. Because of its excellent mechanical properties, titanium alloy is widely used in many industries as structural material. Because of its wide application, titanium alloy will often face failure caused by adiabatic shear band formation in dynamic load, so as to reduce and shorten the service life. Therefore, the study on the formation mechanism of adiaba-tic shear band in titanium alloy is of great significance to prolong the service life of titanium alloy and improve the mechanical properties of titanium alloy.
However,due to the transient of dynamic plastic deformation and the complexity of internal stress, it is difficult to reappear the formation of adiabatic shear band. Meanwhile the complexity of the structure and the instability of phase in the process of deformation increase the difficulty of observing the adiabatic shear band in titanium alloy.
Through a large number of experimental observation and simulation calculation, it is generally believed that the formation mechanism of adiaba-tic shear band in titanium alloy is dynamic recrystallization. At present, there are four mainstream viewpoints in the process of dynamic recrystallization, namely, traditional dynamic recrystallization, continuous dynamic recrystallization, twin dynamic recrystallization and phase transformation induced dynamic recrystallization.According to different dynamic recrystallization methods, the researchers established the basic deformation mo-del and theoretical basis, and found some experimental evidence.
In this review, some typical research results reported in recent years dealing with the adiabatic shear bands about their morphology, properties and related formation mechanisms in titanium alloys subjected to dynamic plastic deformation are summarized. Typical formation mechanisms of adiabatic shear bands and related problems for titanium alloys are discussed so as to provide useful information for future research.
Key words:  titanium alloy    dynamic plastic deformation    dynamic recrystallization    adiabatic shear band
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  TG146  
基金资助: 国家自然科学基金(51171004)
作者简介:  黄子坤,2015年6月毕业于北京理工大学,获得工学学士学位。现为北京工业大学材料与制造学部博士研究生,在孙威教授的指导下进行研究。目前主要研究领域为亚稳β钛合金塑性变形机制与微观结构演变。
孙威,教授,博士研究生导师。1984年毕业于东北大学金属物理系,1987年取得同校金属材料系硕士学位。1994年于日本东北大学大学院工学研究科完成博士课程学习,获材料科学博士学位。1994—1997年,获得日本科技厅国立研究所博士后研究员专项奖励研究基金,在日本科技厅金属材料技术研究所任科学技术特别研究员。1997—1998年在美国弗吉尼亚大学物理系任助理研究员。1998年12月,被日本东北大学金属材料研究所聘为正式文部科学教官。2003年12月,被聘为北京市特聘教授回国工作。
引用本文:    
黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
HUANG Zikun, SUN Wei. Formation Mechanism of Adiabatic Shear Band in Dynamic Plastic Deformation of Titanium Alloy. Materials Reports, 2021, 35(3): 3122-3128.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070111  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3122
1 Mare A Meyers.Dynamic behavior of materials, John Wiley & Sons, Ine, New York,1994,pp.298.2 Yan F H,Zhang X Y.Materials Reports A: Review Papers,2011,25(1),116(in Chinese).闫富华,张喜燕.材料导报:综述篇,2011,25(1),116.3 Zhang L J, Chang H, Xue X Y.Hot Working Technology,2013,42(2),82(in Chinese).张利军,常辉,薛祥义.热加工工艺,2013,42(2),82.4 Li Z H,Ding H,Li J Z.Aeronautical Manufacturing Technology,2013(16),139(in Chinese).李卓梁,丁桦,李继忠.航空制造技术,2013(16),139.5 Yoo M H.Metallurgical Transactions A,1981,12A,409.6 Akhtar A, Teghtsoonian E.Metallurgical and Materials Transactions A,1975,6A,2201.7 Akhtar A.Metall.Metallurgical Transactions A,1975,6A,1105.8 Tyson W.Acta Materialia,1967,1,574.9 Shao Hui, Zhao Yongqing, Ge Peng,et al.Rare Metal Materials and Engineering,2013,42(4),845.10 Liu Xiaoyan, Zhao Xicheng, Yang Xirong, et al.Rare Metal Materials and Engineering,2012,41(4),667.11 Chen B,Sun W,Zhao J, et al.Journal of Materials Engineering,2017,45(1),111(in Chinese).陈斌,孙威,赵颉,等.材料工程,2017,45(1),111.12 Tresca M H.Proceedings of the Institute of Mechallical Engineers,1878,30,30l.13 Suo T,Wang C X,Hang C,et al.Mechanical Science and Technology for Aerospace Engineering,2016,35(1),1(in Chinese).索涛,汪存显,杭超,等.机械科学与技术,2016,35(1),1.14 Lee Woei-Shyan, Lin Chi-Feng.Materials Science and Engineering A,1998,241(1-2),48.15 Wang Tongbo, Li Bolong, Li Mian, et al.Materials Characterization,2015,106,218.16 Wang Yanling, Hui Songxiao, Ye Wenjun, et al.Materials Science Forum,2015,86,795.17 Yang Y, Jiang F, Zhou B M, et al.Materials Science and Engineering A,2011,528(6),2787.18 Wang Zhiming, Chen Zhiyong, Zhan Congkun, et al.Materials Science & Engineering A,2017,691(13),51.19 Yang Y, Li X M, Tonga X L, et al.Materials Science and Engineering A,2011,528(7-8),3130.20 Landau P, Venkert A, Ritte D.Metallurgical and Materials Transactions A,2010,41(2),389.21 Wan Z P, Zhu Y E, Liu H W, et al.Materials Science and Engineering A,2011,531,155.22 Kuang Lianjun, Chen Zhiyong, Jiang Yanghui, et al.Materials Science & Engineering A,2017,685,95.23 Meyers M A, Pak Han-Ryong.Acta Metallurgica,1986,34(12),2493.24 You Z P,Mi X J,Hui S X,et al.Rare Metal Materials and Engineering,2011,40(7),1184(in Chinese).尤振平,米绪军,惠松骁,等.稀有金属材料与工程,2011,40(7),1184.25 Cheng X W, Sun K, Wang F C.Rare Metal Materials and Engineering,2008,37(10),1756(in Chinese).程兴旺,孙坤,王富耻.稀有金属材料与工程,2008,37(10),1756.26 Xu F, Zhang X Y, Cheng Y M.Rare Metal Materials and Engineering,2013,42(4),801(in Chinese).许峰,张喜燕,程佑铭.稀有金属材料与工程,2013,42(4),801.27 Zener C, Ho11omon J H.Transactions of the America Society of Mechanical,1944,33,163.28 Zerilli F,et al.Journal of Applied Physics,1987,61,1816.29 Wang B.Journal of Materials Science,2007,43(5),1576.30 Zerilli F, et al.Journal of Applied Physics,1990,68(4),1580.31 Zerilli F Amstrong R. In: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Mater. American Institute of Physics, Seattle(WA),1995,pp.315.32 Kad B, et al.Acta Materialia,2006,54(16),4111.33 Lee Sunghak, Cho Kyung-Mox, Lee Chang Sun, et al.Metallurgical Transactions A,1993,24A,10.34 Meyers M A, Chen Y J, Marquis F D S, et al.Metallurgical and Mate-rials Transactions A,1995,26(10),2493.35 Meyers M A, Andrade U R, Chokshi A H.Metallurgical and Materials Transactions A,1995,26(11),2881.36 Liu C M,Liu Z J,Zhu X R,et al.Transactions of Nonferrous Metals Society of China,2006,16(1),1(in Chinese).刘楚明,刘子娟,朱秀荣,等.中国有色金属学报,2006,16(1),1.37 Momeni A,Ebrahimi G R,Jahazi M, et al.Journal of Alloys and Compounds,2014,587(7),199.38 Wu Chuan, Yang He, Li Hongwei.Transactions of Nonferrous Metals Society of China,2014,24(6),1819.39 Liu Jinxu, Li Shukui, Zhou Xiaoqing, et al.Rare Metal Materials and Engineering,2011,40(6),957.40 Culver R S.Thernlal instability strain in dynamic plastic defonnation, Springer, New York,1973,pp.519.41 Recht R F.Joumal of Applied Mechanics,1964,31(2),189.42 Landau P, Venkert A, Rittel D.Metallurgical and Materials Transations A,2010,41(2),389.43 Rittel D, Landau P.Physical Review Letters,2008,101(16),165501.44 Zhao W S,Tao N R,Guo j Y,et al.Scripta Materialia,2005,53(6),745.45 Xiao G H,Tao N R,Lu K.Materials Science & Engineering A,2009,513-514,13.46 Kad B K,Gebert J M,P6rez-Prado M T,et al.Acta Materialia,2006,54(16),4111.47 Lu Q H,Zhao W S,Sui M L,et al.Acta Metallurgica Sinica,2006,42(9),909(in Chinese).卢秋红,赵伟松,隋曼龄,等.金属学报,2006,42(9),909.48 Liu Z L, You X C, Zhuang Z.International Journal of Solids and Structures,2008,45(13),3674.49 Chiou Sutang, Cheng Weichun, Lee Woei-Shyan.Materials Science & Engineering A,2004,386(1-2),460.50 Uenishi A,Teodosiu C,Nesterova E V. Materials Science & Engineering A,2005,400-401(25),499.51 Li Y S,Tao N R,Lu K.Acta Materialia,2008,56,230.52 Karaman I, Sehitoglu H, Gall K, et al.Acta Materialia,2000,48(6),1345.53 Xiao G H, Tao N R, Lu K.Scripta Materialia,2008,59(9),975.54 Pradhan S K, Mandal S, Athreya C N, et al.Materials Science & Engineering A,2017,700,49.55 Zhao W S, Tao N R, Guo J Y, et al.Scripta Materialia,2005,53(6),745.56 Kaibysbev R, Sitdikov O.Zeitschriftfur Metallkunde,1994,85,738.57 Kaibyshev R, Sitdikov O.Fizika Metallovi Metallovedenie,2000,89(4),707.58 Kawabata T, Kawasaki A, Izumi O.Acta Materialia,1998,46(8),2705.59 Dougherty L M, GrayIII G T, Cerreta E K, et al.Scripta Materialia,2009,60(9),772.60 Wan Z P, Zhu Y E, Liuc H W, et al.Materials Science and Engineering A,2012,53(1),155.61 Chen Bin, Sun Wei.Scripta Materialia,2018,150,115.62 Xu Y B, Bai Y L, Meyers M A.Journal of Vacuum Science & Technology,2006,22(6),737.63 Yang Y, Jiang F, Zhou B M, et al.Materials Science and Engineering A,2011,528(6),2787.
[1] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[2] 庄唯, 王耀勉, 杨换平, 剡文斌. 钛合金渗碳处理研究进展[J]. 材料导报, 2020, 34(Z2): 344-347.
[3] 许爱平, 侯继军, 董俊慧. 稀土活性剂对TC4钛合金激光焊焊接接头的影响[J]. 材料导报, 2020, 34(Z2): 348-350.
[4] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[5] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[6] 朱雪峰, 周瑜, 樊凯, 王柯. TC18钛合金固溶过程中黑斑组织的形成机理[J]. 材料导报, 2020, 34(Z1): 289-292.
[7] 郝芳, 辛社伟, 毛友川, 楼美琪, 周伟, 杜予晅, 王凯旋, 屈磊, 冯勇. 钛合金在装甲领域的应用综述[J]. 材料导报, 2020, 34(Z1): 293-296.
[8] 韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
[9] 郭晋昌, 石玗, 耿培彪, 朱明. 激光维持等离子体钛合金表面渗氮研究进展[J]. 材料导报, 2020, 34(5): 5109-5114.
[10] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[11] 张俊喜, 易湘斌, 沈建成, 陈百明, 李保栋, 徐创文. 固溶和工作温度对TC21钛合金动态压缩性能和绝热剪切敏感性的影响[J]. 材料导报, 2020, 34(24): 24092-24096.
[12] 王昕宇, 徐春, 黎雨, 庞灵欢, 王斌君, 陈建斌. 电脉冲拉伸下5052铝合金的变形行为及微观组织和织构演变[J]. 材料导报, 2020, 34(24): 24097-24103.
[13] 罗锐, 陈乐利, 曹赟, 周皓天, 崔树刚, 韩敏, 裴昌磊, 程晓农, 高佩. 铬钼高温铁素体钢的形变特性与动态再结晶模型[J]. 材料导报, 2020, 34(20): 20118-20122.
[14] 任超, 罗军明, 陈宇海, 黄俊, 徐吉林. 喷丸对TC4合金微弧氧化涂层磨损和腐蚀行为的影响[J]. 材料导报, 2020, 34(18): 18081-18085.
[15] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. TC4合金激光熔覆材料的研究现状[J]. 材料导报, 2020, 34(15): 15132-15137.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed