Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7176-7182    https://doi.org/10.11896/cldb.19100163
  金属与金属基复合材料 |
抑制二次电子发射方法的研究
金雪莲1,2, 吴雪梅1,2, 诸葛兰剑3, 金成刚4
1 苏州大学物理科学与技术学院,苏州 215006
2 江苏省薄膜材料重点实验室,苏州 215006
3 苏州大学分析测试中心,苏州 215006
4 哈尔滨工业大学空间环境与物质科学研究院,哈尔滨 150001
Study on Suppression of Secondary Electron Emission JIN Xuelian1,2, WU Xuemei1,2, ZHUGE Lanjian3, JIN Chenggang4
JIN Xuelian1,2, WU Xuemei1,2, ZHUGE Lanjian3, JIN Chenggang4
1 School of Physical Science and Technology, Soochow University, Soochow 215006, China
2 Provincial Key Laboratory of Thin Films, Soochow University, Soochow 215006, China
3 Soochow University Analysis and Testing Center, Soochow 215006, China 4 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 3198KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电介质和金属表面被激发出来的二次电子(Secondary electron emission, SEE)可以显著地改变该表面附近的电势分布和通量。在一些情况下,如电子束焊机、扫描电子显微镜、透射式电子显微镜、电子衍射仪、俄歇电子能谱仪、电子倍增管等应用中,二次电子的次级倍增效应得到很好的应用。然而在另一些情况下,例如射频放大器、粒子加速器和霍尔推进器、电子真空管、空间宇宙飞行器表面等应用中,二次电子会对仪器产生不利的影响。因此,抑制二次电子发射及研究减少二次电子产额(Secondary electron yield, SEY)是非常有意义的。现有的抑制二次电子发射的研究方法有外加偏置场法和表面处理法,其中通过外加电场或磁场来抑制二次电子的激发会对入射束流、束斑产生不利影响,因此表面处理法更具优势。表面处理法主要分为三类:表面陷阱构造(矩形以及三角形的凹槽、微孔结构、纤维结构、泡沫结构等)、表面镀膜(石墨烯膜、TiN膜等)、表面束流处理(激光刻蚀、磁控溅射法)。这些抑制二次电子激发的方法主要为了达到两个目的,一是减少物体表面的真二次电子的发射,二是捕获发射的二次电子,使之不能逃逸。本文总结了一些抑制二次电子激发的方法,比较不同方法或不同影响因素对二次电子的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金雪莲
吴雪梅
诸葛兰剑
金成刚
关键词:  二次电子发射  表面构造  表面镀膜  离子束轰击    
Abstract: Secondary electron emission (SEE) from dielectric and metal surface can significantly change the potential distribution and flux near the surface. In some cases, the secondary electron production has a positive effect, such as electron beam welder, scanning electron microscope, transmission electron microscope, electron diffractometer, auger electron spectrometer, electron multiplier tube and so on. However, in other cases, secondary electrons are not expected to be excited, such as RF-amplifiers, particle accelerators, hall thrusters, electron vacuum tubes, and on the surface of spacecraft in space. Therefore, the research on reducing secondary electron yield(SEY) is an active research field. The exis-ting research methods include the applied bias field method and the surface treatment method, and the applied electric or magnetic field to suppress the secondary electron will have an adverse effect on the incident beam and beam spot. Therefore, surface treatment method has more advantages, which can be divided into three categories: surface trap structure (rectangular and triangular groove, microporous structure, fiber structure, foam structure, etc.), surface coating (graphene film, TiN film, etc.), and surface beam treatment (laser etching, magnetron sputtering method).The main purpose of these methods of suppressing secondary electrons is either to reduce the emission of true secondary electrons from the surface, to capture the emitted secondary electrons so that they cannot escape, or both. This paper summarizes some methods to suppress the secondary electron and compares the effects of different methods or different factors on the secondary electron.
Key words:  secondary electron emission    surface structure    surface coating    ion beam bombardment
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  O53  
基金资助: 国家自然科学基金(11505123;11435009)
作者简介:  金雪莲,2017年6月毕业于南京师范大学,取得物理学学士。现为苏州大学物理科学与技术学院硕士研究生,在吴雪梅教授的指导下进行研究。主要研究二次电子发射。
吴雪梅,1988年毕业于中国山东大学,获物理学学士学位。1991年从安徽中国科学院取得物理学硕士学位。2002年从苏州东吴大学取得物理学博士学位。她曾在物理研究所博士后工作站,中国科学院合肥分院工作,长期从事新型等离子体源、等离子体物理化学方法及纳米材料的制备研究。现在她是苏州大学的教授。
引用本文:    
金雪莲, 吴雪梅, 诸葛兰剑, 金成刚. 抑制二次电子发射方法的研究[J]. 材料导报, 2021, 35(7): 7176-7182.
JIN Xuelian, WU Xuemei, ZHUGE Lanjian, JIN Chenggang. Study on Suppression of Secondary Electron Emission JIN Xuelian1,2, WU Xuemei1,2, ZHUGE Lanjian3, JIN Chenggang4. Materials Reports, 2021, 35(7): 7176-7182.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100163  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7176
1 Xie A G. Research on secondary electron emission and measurement of secondary electron emission coefficient. Ph.D. Thesis, University of Science and Technology of China, China, 2005(in Chinese).
谢爱根.二次电子发射的研究和二次电子发射系数的测量.博士学位论文,中国科学技术大学, 2005.
2 Wang J M. Study on the preparation of high power function thin films and the mechanism of inhibiting the emission of collected polar secondary electrons. Master's Thesis, University of Electronic Science and Technology of China, China, 2012(in Chinese).
王加梅.高功函数薄膜制备及抑制收集极二次电子发射机理研究.硕士学位论文,电子科技大学, 2012.
3 Insepov Z, Ivanov V, Frisch H. Nuclear Instruments & Methods in Phy-sics Research Section B-beam Interactions with Materials and Atoms, 2010, 268,3315.
4 Cimino R, Collins I R, Furman M A, et al. Physical Review Letters, 2004, 93(1),014801.
5 Chen Y F, Yang S S, Li D T, et al. Atomic Energy Science and Techno-logy, 2015, 49(9),1673(in Chinese).
陈益峰,杨生胜,李得天,等.原子能科学技术, 2015, 49(9),1673.
6 Fazlul Haque A K, Haque M M, Atiqur M, et al. Vacuum, 2017, 141,192.
7 Shatas R A, Marshall J F, Pomerantz M A. Physical Review, 1956, 102(3), 682.
8 Wang Z W, Ye M, Chen L, et al. High Power Laser and Particle, 2016, 28(12), 124002(in Chinese).
王泽卫,叶鸣,陈亮,等.强激光与粒子束, 2016, 28(12), 124002.
9 Miao G H, Cui W Z, Yang J, et al. Space Electronic Technology, 2018(1), 25(in Chinese).
苗光辉,崔万照,杨晶,等.空间电技术, 2018(1), 25.
10 Lin S Y, Yang J, Li Y D, et al. Acta Physica Sinica, 2014, 63(14), 147902(in Chinese).
林舒闫,杨娇,李永东,等.物理学报, 2014, 63(14), 147902.
11 He J, Yu B, Wang Q, et al. Acta Physica Sinica, 2018, 67(8), 087901(in Chinese).
何鋆,俞斌,王琪,等.物理学报, 2018, 67(8), 087901.
12 Dunaevsky A, Raitses Y, Fisch N J. Physics of Plasmas, 2003, 10(6), 2574.
13 Eren B, Gysin U, Marot L, et al. Applied Physics Letters, 2016, 108(4), 041602.
14 Pivi M, King F K, Kirby R E, et al. Journal of Applied Physics, 2008, 104(10), 104904.
15 Cao M, Zhang N, Hu T C, et al. IOP Publishing, 2015, 48(7),055501.
16 Zhang N, Cao M, Cui W Z, et al. Acta Physica Sinica. 2015, 64(20), 207901(in Chinese).
张娜,曹猛,崔万照,等.物理学报, 2015, 64(20),207901.
17 Ye M, He Y N, Hu S G, et al. Journal of Applied Physics, 2013, 113(7), 074904.
18 Ye M, Wang D, He Y N. Journal of Applied Physics, 2017, 121(12), 124901.
19 Ye M, He Y N, Hu S G, et al. Journal of Applied Physics, 2013, 114(10), 104905.
20 Huang Y F, Zhang W B, Li R J, et al. Vacuum Electronics, 2014(5), 62(in Chinese).
黄艳峰,张文斌,李荣洁,等.真空电子技术, 2014(5), 62.
21 Charles Swanson, Igor D. Kaganovich. Journal of Applied Physics, 2016, 120(21), 213302.
22 Charles Swanson, Igor D Kaganovich. Journal of Applied Physics, 2017, 122(4), 043301.
23 Jin C G, Ottaviano A, Raitses Y. Journal of Applied Physics, 2017, 122(17), 173301
24 Charles Swanson, Igor D Kaganovich. Journal of Applied Physics, 2018, 123(2), 023302.
25 Feng P, Ye M, Li Y, et al. Space Electron Technology, 2018(1),17(in Chinese).
冯鹏,叶鸣,李韵,等.空间电子技术, 2018(1), 17.
26 Costa Pinto P, Calatroni S, Neupert H, et al. Vacuum, 2013, 98, 29.
27 Yin Vallgren C, Arduini G, Bauche J, et al. Physical Review Special Topics-Accelerators and Beams, 2011, 14(7), 071001.
28 Wang J M, Zhao Q, Wu H C. Journal of Functional Materials and Devices, 2012, 18(1), 5(in Chinese).
王加梅,赵青,武洪臣.功能材料与器件学报, 2012, 18(1), 5.
29 Cao M, Zhang X S, Liu W H, et al. Diamond & Related Materials, 2017, 73,199.
30 Isabel Montero, Lydya Aguilera, María E Dávila, et al. Applied Surface Science, 2014, 291,74.
31 Gupta S, Heintzman E, Jasinski J. Journal of Electron Materials, 2014, 43(9), 3458.
32 Luo J, Tian P, Pan C T, et al. ACS Nano, 2011, 5(2), 1047.
33 Rosanna Larciprete, Davide Remo Grosso, Antonio Di Trolio. Applied Surface Science, 2015, 328, 356.
34 Jiao X J, Su D S, Wang Q. Journal of Microwaves, Journal of Microwaves, 2012(6), 282(in Chinese).
焦晓静,苏党帅,王茜.微波学报, 2012(6), 282.
35 Patino M, Raitses Y, Wirz R. Applied Physics Letters, 2016, 109(20), 201602.
36 Chung M S, Everhart T E. Journal of Applied Physics, 1974, 45(2),707.
37 Cimino R, Commisso M, Grosso D R, et al. Physical Review Letter, 2012, 109(6), 064801.
38 Valizadeh R, Malyshev O B, Wang S, et al. Applied Surface Science, 2017, 404, 370.
39 Reza Valizadeh, Oleg B Malyshev, Sihui Wang, et al. Applied Physics Letters, 2014, 105(23),231605.
[1] 白园蕊, 马建中, 刘俊莉, 鲍艳, 崔万照, 胡天存, 吴朵朵. 基于胶体晶体构筑银纳米薄膜及其抑制微放电性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 515-519.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed