Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 515-519    https://doi.org/10.11896/j.issn.1005-023X.2018.04.001
  材料研究 |
基于胶体晶体构筑银纳米薄膜及其抑制微放电性能研究
白园蕊1, 2, 马建中1, 2, 刘俊莉3, 鲍艳1, 2, 崔万照4, 胡天存4, 吴朵朵2, 5
1 陕西科技大学轻工科学与工程学院,西安 710021;
2 陕西农产品加工技术研究院,西安 710021;
3 陕西科技大学 材料科学与工程学院,西安 710021;
4 中国空间技术研究院西安分院,空间微波技术重点实验室,西安 710100;
5 陕西科技大学化学与化工学院,西安 710021
Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance
BAI Yuanrui1, 2, MA Jianzhong1, 2, LIU Junli3, BAO Yan1, 2, CUI Wanzhao4, HU Tiancun4, WU Duoduo2, 5
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021;
2 Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021;
3 School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021;
4 National Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology(Xi'an), Xi'an 710100;
5 College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology,Xi'an 710021;
下载:  全 文 ( PDF ) ( 2720KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,微放电效应的抑制研究在加速器、大功率微波器件等领域得到了广泛的关注。采用聚苯乙烯(PS)胶体晶体模板辅助磁控溅射法制备了类空心球结构的银薄膜,通过调节PS模板尺寸及溅射时间(镀银层厚度),得到具有抑制微放电效应的银薄膜。采用SEM表征银薄膜的形貌与结构,并用二次电子发射系数(SEY)测试平台表征银薄膜的SEY。结果表明,PS模板尺寸及溅射时间对银薄膜形貌及其二次电子抑制作用有显著的影响,当溅射时间为600 s,模板尺寸为1 000 nm时,银薄膜的SEY较小,即对二次电子的抑制作用较为显著,与初始镀银铝合金样品相比,其SEY值降低了48%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白园蕊
马建中
刘俊莉
鲍艳
崔万照
胡天存
吴朵朵
关键词:  PS胶体晶体  磁控溅射  银薄膜  二次电子发射系数  抑制    
Abstract: In recent years, multipactor suppression has been widely concerned in the accelerator, high-power microwave devices and other related fields. In this study, hollow sphere-like silver film was obtained via magnetron sputtering assisted by polystyrene (PS) colloidal crystal template. The second electron suppression effect of the silver film was adjusted by the size of PS template and the sputtering time (thickness of the silver layer). The morphology of silver films was characterized by SEM,and the SEY of silver films was characterized by secondary electron emission (SEY) test platform. The results show that size of PS template and sputtering time have significant effect on the morphology of silver film and its secondary electron suppression. When the sputtering time was 600 s and the template size was 1 000 nm, the maximum SEY of the silver film was relatively low, which meant the second electron suppression effect was more significant. Compared with the initial silver-plated aluminum alloy samples, the SEY value decreased by 48%.
Key words:  PS colloidal crystal    magnetron sputtering    silver film    secondary electron emission    suppression
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TB34  
基金资助: 国家自然科学基金(21376145); 国家自然科学基金重点项目(U1537211); 陕西科技大学科研创新团队资助项目(TD12-03)
通讯作者:  马建中,男,1960年生,教授,主要研究方向为有机/无机纳米杂化材料的制备 E-mail:majz@sust.edu.cn;刘俊莉,女,1986年生,讲师,研究方向为有机-无机纳米复合材料的合成及应用 E-mail:liujunli042@163.com   
作者简介:  白园蕊:女,1992年生,硕士,主要研究方向为纳米涂层 E-mail:780656336@qq.com
引用本文:    
白园蕊, 马建中, 刘俊莉, 鲍艳, 崔万照, 胡天存, 吴朵朵. 基于胶体晶体构筑银纳米薄膜及其抑制微放电性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 515-519.
BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance. Materials Reports, 2018, 32(4): 515-519.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.001  或          http://www.mater-rep.com/CN/Y2018/V32/I4/515
1 Zhang Na,Cui Wanzhao,Hu Tiancun,et al.Advances in research on multipactor[J].Space Electronic Technology,2011(1):38(in Chinese).
张娜,崔万照,胡天存,等.微放电效应研究进展[J].空间电子技术,2011(1):38.
2 Michizono S, Saito Y, Yamano Y, et al. Secondary electron emission of TiN-coated alumina ceramics[J].Vacuum,2007,81(6):799.
3 Costa Pinto P, Calatroni S, Neupert H, et al. Carbon coatings with low secondary electron yield[J].Vacuum,2013,98(4):29.
4 Pivi M, King F K, Kirby R E, et al. Sharp reduction of the secondary electron emission yield from grooved surfaces[J].Journal of Applied Physics,2008,104(10):104904.
5 Ye M, He Y N, Hu S G, et al. Investigation into anomalous total secondary electron yield for micro-porous Ag surface under oblique incidence conditions[J].Journal of Applied Physics,2014,63(14):350(in Chinese).
叶鸣,贺永宁,王瑞,等.基于微陷阱结构的金属二次电子发射系数抑制研究[J].物理学报,2014,63(14):350.
6 Bao Y, Zhang Y, Ma J, et al. Controllable fabrication of one-dimensional ZnO nanoarrays and their application in constructing silver trap structures[J].RSC Advances,2014,4(63):33198.
7 Wanke M C, Lehmann O, Müller K, et al. Laser rapid prototyping of photonic band-gap microstructures[J].Science,1997,275(5304):1284.
8 Ye Xin,Zhou Xinda,Huang Jin,et al. Influence of particle concentration on 2D colloidal crystals assembled by dip-coating[J].Atomic Energy Science and Technology,2011(4):447(in Chinese).
叶鑫,周信达,黄进,等.浓度对提拉组装二维胶晶模板及其缺陷的影响[J].原子能科学技术,2011(4):447.
9 Chen J, Dong P, Di D, et al. Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating[J].Applied Surface Science,2013,270:6.
10 Liau L C K, Chen Y P. Effects of voltage operating strategy on electrophoretic self-assembly deposition of spherical SiO2 particles in water[J].Colloidal and Surfaces A-Physicochemical and Engineering Aspects,2013,429:121.
11 Li Z, Wang W, Zhang L, et al. Magnetically modulated critical current densities of Co/Nb hybrid[J].Scientific reports,2015,5:18601.
12 Zhang H, Duan G, Liu G, et al. Layer-controlled synthesis of WO3 ordered nanoporous films for optimum electrochromic application[J].Nanoscale,2013,5(6):2460.
13 Cheng J Y, Ross C A, Chan V Z H, et al. Fabrication of nanopatterned thin films using self-assembled block copolymer lithography[J].Advanced Materials,2001,13:1174.
14 Stewart M E. Quantitative multispectral biosensing and imaging using plasmonic crystals[M].Ann Arbor:ProQuest,2008.
15 Lee K B, Park S J, Mirkin C A, et al. Protein nanoarrays generated by dip-pen nanolithography[J].Science,2002,295(5560):1702.
16 Denkov N, Velev O, Kralchevski P, et al. Mechanism of formation of two-dimensional crystals from latex particles on substrates[J].Langmuir,1992,8(12):3183.
17 Ye X, Li Y, Dong J, et al. Facile synthesis of ZnS nanobowl arrays and their applications as 2D photonic crystal sensors[J].Journal of Materials Chemistry C,2013,1(38):6112.
18 Li C, Hong G, Qi L. Nanosphere lithography at the gas/liquid interface: A general approach toward free-standing high-quality nano-nets[J].Chemistry of Materials,2009,22(2):476.
19 Kei C C, Chen T H, Chang C M, et al. Preparation of periodic arrays of metallic nanocrystals by using nanohoneycomb as reaction vessel[J].Chemistry of Materials,2007,19(24):5833.
20 Yu J, Yan Q, Shen D. Co-self-assembly of binary colloidal crystals at the air-water interface[J].ACS Applied Materials & Interfaces,2010,2(7):1922.
21 Gao S, Koshizaki N, Li Y, et al. Unique hexagonal non-close-packed arrays of alumina obtained by plasma etching/deposition with catalytic performance[J].Journal of Materials Chemistry,2011,21(7):2087.
22 Montero I, Aguilera L, Dávila M E, et al. Novel types of anti-ecloud surfaces[J].Physics,doi:10.5170/CERN-2013-002.153.
[1] 王珩, 刘伟宝, 陆采荣, 梅国兴, 戈雪良, 杨虎. PL复合掺合料对骨料碱活性的抑制及孔溶液分析[J]. 材料导报, 2019, 33(z1): 214-218.
[2] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[3] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[4] 孙科学, 常月欣, 成谢锋. xBiInO3-(1-x)PbTiO3薄膜的横向压电特性[J]. 材料导报, 2019, 33(14): 2299-2304.
[5] 刘涛, 马垒, 赵世谦, 马冬冬, 李林, 成钢. 沉积厚度对L10-FePd颗粒膜结构和磁性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 525-527.
[6] 贺凯, 陈诺夫, 魏立帅, 王从杰, 陈吉堃. 退火对铝诱导结晶锗薄膜的影响及其机理[J]. 材料导报, 2018, 32(15): 2571-2575.
[7] 康淮,陆轴,钟志有,龙浩. 磁控溅射制备镁镓共掺氧化锌透明半导体薄膜及其性能研究[J]. 《材料导报》期刊社, 2018, 32(11): 1938-1942.
[8] 李家节, 郭诚君, 周头军, 饶先发, 周慧杰, 杨斌. 烧结钕铁硼磁体溅射渗镝工艺与磁性能研究*[J]. 《材料导报》期刊社, 2017, 31(4): 17-20.
[9] 房迪, 肖清泉, 廖杨芳, 袁正兵, 王善兰, 吴宏仙. 钠钙玻璃上Mg2Si薄膜的制备及其电学性质*[J]. 《材料导报》期刊社, 2017, 31(4): 9-13.
[10] 陈亚军, 郁佳琪, 赵婕宇, 王付胜. 磁控溅射高温固体自润滑涂层的研究与进展*[J]. 《材料导报》期刊社, 2017, 31(3): 32-37.
[11] 高正源, 胡琳盛, 刘 浪, 任 毅, 李辉君. 从工艺参数角度探讨AZ系镁合金表面磁控溅射单层铝及氧化铝膜的耐腐蚀和耐磨损性能[J]. 材料导报, 2017, 31(1): 90-96.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed