Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21080275-7    https://doi.org/10.11896/cldb.21080275
  无机非金属及其复合材料 |
适用声波谐振器的磁控溅射制备AlN薄膜优化技术
马新国1,2, 程正旺1, 王妹1, 贺晶1, 邹维1, 邓水全3
1 湖北工业大学芯片产业学院,武汉 430068
2 湖北省能源光电器件与系统工程技术研究中心,武汉 430068
3 中国科学院福建物质结构研究所结构化学国家重点实验室,福州 350002
Optimizing Technology of the Preparation of AlN Thin Film by Magnetron Sputtering for Acoustic Resonators
MA Xinguo1,2, CHENG Zhengwang1, WANG Mei1, HE Jing1, ZOU Wei1, DENG Shuiquan3
1 School of Chip Industry, Hubei University of Technology, Wuhan 430068, China
2 Hubei Energy Optoelectronic Device and System Engineering Technology Research Center, Wuhan 430068, China
3 Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
下载:  全 文 ( PDF ) ( 4009KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 AlN具有优良的物理化学性质以及与标准CMOS晶硅技术的兼容性,显示出优于相应的ZnO和PZT等性能,使其成为最受关注的压电材料之一。AlN压电薄膜表现出合适的机电耦合系数、高纵波声速、大杨氏模量和高热导率等特点,以及随着制备工艺和材料微结构调控技术的快速发展,使其成为5G时代声波谐振器中的关键电子材料。其成膜质量直接决定器件的工作频率、Q值和可靠性。
近些年来,在反应磁控溅射法制备AlN薄膜及其微结构调控方面取得重要进展,具有成膜质量好、沉积速率高以及成本低等优点,已成为这类薄膜的首选制备方法。由于影响其成膜质量的因素很多,以至于通过某一个工艺参数调控其成膜质量往往无法同时满足多个质量指标。研究表明,AlN薄膜定向生长受溅射功率、工作气压和N2/Ar流量比等多重因素影响,提高薄膜取向性相对复杂。降低薄膜应力一般通过简单地调节Ar气流量来实现,这是因为薄膜应力对Ar气流量变化极为敏感。而表面粗糙度和膜厚均匀性等主要受到溅射功率和工作气压影响。除了反应磁控溅射基本参数外,还普遍发现基底放置方向、基底材料、基底清洁度、退火温度和气氛等对薄膜的结晶及择优取向的影响也十分显著。
本文围绕影响AlN压电薄膜在声波谐振器应用的主要物理指标:晶面择优取向、薄膜应力、表面粗糙度和沉积速率来展开说明,系统分析了反应磁控溅射法中的溅射功率、气体分压、基底温度等关键工艺参数对其影响的规律;最后,对AlN薄膜研究中亟待解决的问题以及未来发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马新国
程正旺
王妹
贺晶
邹维
邓水全
关键词:  AlN薄膜  压电材料  声波谐振器  磁控溅射  择优取向    
Abstract: Aluminum nitride (AlN) is one of the most attractive piezoelectric materials due to its excellent physiochemical properties and great compatibility with standard CMOS crystalline silicon technology. Therefore, AlN is advantageous as compared to other alternatives such as ZnO or lead zirconate titanate (PZT), where AlN thin films have great potential to become a key component in acoustic resonators in the 5G age. AlN thin films exhibit an excellent electromechanical coupling coefficient, high acoustic velocity, large elastic modulus, andhigh thermal conductivity. With the recent developments of thin film technology, good control of the film microstructure can be achieved, where the thin film quality directly determines the overall properties of the device, including the operating frequency, Q value and the overall reliability. In recent years, important progress has been made concerning the preparation technology of AlN thin films by reactive magnetron sputtering, leading to good control of the microstructure of well-formed films, using a high deposition rate, low price. Adjusting the many factors that influence the thin film quality may be rather challenging though to meet the requirements of the main physical parameters. Previous studies suggest that the directional growth of AlN thin films is affected by several factors such as the sputtering power, base pressure and N2/Ar flow ratio. Furthermore, it was reported that the thin film stress was extremely sensitive to changes in the Ar gas flow, whereas the surface roughness and film thickness were mainly affected by the sputtering power and base pressure. In addition to the basic parameters of reactive magnetron sputtering, it is generally found that the orientation of substrate during growth, the substrate material, the substrate cleanliness, the annealing temperature and atmosphere have significant effects on the crystallization and preferred orientation of thin films. Here in this work, we focus on several physical parameters of AlN thin films such as the preferential orientation of the crystal planes, film stress, surface roughness, and deposition rate, and their variations with sputtering power, gas partial pressure, and substrate temperature. Furthermore, we discuss several problems of AlN thin film work that remain to be solved in future and the possible directions that future research in this exciting field may proceed to.
Key words:  AlN thin film    piezoelectric material    acoustic resonator    magnetron sputtering    preferential orientation
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  O484.1  
  TN65  
基金资助: 国家自然科学基金面上项目(51472081);结构化学国家重点实验室开放课题基金(20210028);湖北工业大学绿色工业科技引领计划杰出人才基金(JCRC2021003)
通讯作者:  马新国,通信作者,湖北工业大学芯片产业学院教授,博士研究生导师。2001年6月本科毕业于湖北师范大学物理系,2010年3月在华中科技大学电子系获得微电子学与固体电子学博士学位,2010—2013年分别在清华大学和香港城市大学进行博士后研究工作。2017—2019年在美国密苏里大学堪萨斯分校开展访问学者工作。先后入选香江学者计划,湖北省楚天学者计划和校南湖学者计划。主要从事射频滤波器和双工器制造、微电子器件与工艺、压电材料制备等研究工作。近年来,主持和参与纵向和横向科研项目10余项,包括国家自然科学基金、中英桥国际合作重大项目等。以第一作者或者通信作者身份共发表学术论文80余篇,被SCI/EI收录50余篇,获批国家专利4项。   
引用本文:    
马新国, 程正旺, 王妹, 贺晶, 邹维, 邓水全. 适用声波谐振器的磁控溅射制备AlN薄膜优化技术[J]. 材料导报, 2023, 37(11): 21080275-7.
MA Xinguo, CHENG Zhengwang, WANG Mei, HE Jing, ZOU Wei, DENG Shuiquan. Optimizing Technology of the Preparation of AlN Thin Film by Magnetron Sputtering for Acoustic Resonators. Materials Reports, 2023, 37(11): 21080275-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080275  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21080275
1 Aigner R, Fattinger G, Schaefer M, et al. Conference Record of IEEE International Electron Devices Meeting (IEDM). San Francisco, 2018, pp. 332.
2 Mahon S. IEEE Transactions on Semiconductor Manufacturing, 2017, 30(4), 494.
3 Hagelauer A, Fattinger G, Ruppel C C W, et al. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(10), 4548.
4 Ali W R, Prasad M. Sensors and Actuators A, 2020,301, 111756.
5 Liu Y, Cai Y, Zhang Y, et al. Micromachines, 2020,11, 630.
6 Chang Y C, Chen Y C, Li B R, et al. Coatings, 2021,11, 397.
7 Wu T, Jin H, Dong S, et al. Sensors, 2020, 20(5), 1346.
8 Zhao J H, Xing Y H, Han J, et al. Semiconductor Science and Technology, 2021,36, 1.
9 Wang L, Lin A, Kim E S. IEEE Sensors Journal, 2018,18, 7633.
10 Cassellam C, Segovia-Fernandezmm J. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2019, 66(5), 958.
11 Iqbal A, Mohd-Yasin F. Sensors, 2018,18, 1797.
12 Kamohara T, Akiyama M, Ueno N, et al. Applied Physics Letters, 2006,89, 71919.
13 Wu H L, Zhao W, He C G, et al. Superlattices and Microstructures, 2019,125, 343.
14 Kumar A, Prasad M, Janyani V,et al. Journal of Nanoelectronics and Optoelectronics, 2019,14(9), 1267.
15 Wang J L, Park M, Mertin S, et al. Journal of Microelectromechanical Systems, 2020,4, 1.
16 Zhao J H, Han J, Xing Y H, et al. Semiconductor Science and Technology, 2020,35, 35009.
17 Mwema F M, Akinlabi E T, Oladijo O P. Materials Today: Proceedings, 2020, 4, 26.
18 Jin C F, Si M J, Xu Y, et al. Piezoelectrics & Acoustooptics, 2016, 38(4), 539 (in Chinese).
金成飞, 司美菊, 徐 阳, 等. 压电与声光, 2016, 38(4), 539.
19 Trant M, Fischer M, Thorwarth K,et al. Surface and Coatings Technology, 2018,348, 159.
20 Gauter S, Haase F, Kersten H. Thin Solid Films, 2019,669, 8.
21 Marenkov E, Nordlund K, Sorokin I, et al. Journal of Nuclear Materials, 2017,496, 18.
22 Lin J L, Chistyakov R. Applied Surface Science, 2016,396, 129.
23 Iqbal A, Walker G, Hold L, et al. Journal of Materials Science: Materials in Electronics, 2020,31, 239.
24 Takano Y, Hayakawa R, Suzuki M, et al. Japanese Journal of Applied Physics, 2021,60, 8.
25 Lan W H, Xu Y, Zhang Y C, et al. Journal of Synthetic Crystals, 2020, 49(6), 1040 (in Chinese).
兰伟豪, 徐阳, 张永川, 等. 人工晶体学报, 2020, 49(6), 1040.
26 Chauhan S S, Joglekar M M, Manhas S K. Journal of Electronic Mate-rials, 2018,47, 7520.
27 Chiu K H, Chen J H, Chen H R, et al. Thin Solid Films, 2007, 515(11), 4819.
28 Tan W, Xu J, Wang H H, et al. Chinese Journal of Vacuum Science and Technology, 2016, 36(10), 1092 (in Chinese).
谭伟, 徐军, 王行行, 等. 真空科学与技术学报, 2016, 36(10), 1092.
29 Ohtsuka M, Takeuchi H, Fukuyama H. Japanese Journal of Applied Phy-sics, 2016,55, 05FD08.
30 Xie B W, Ding F Z, Shang H J, et al. Rare Metals, 2021,40, 3668.
31 Imran S, Yuan J, Yin G, et al. Surface and Interface Analysis, 2017, 49(9), 885.
32 Lan W H. Research on techniques of coating FBAR filter for 5G communication sub-6GHz band. Master's Thesis, Chongqing University of Posts and Telecommunications, China, 2019 (in Chinese).
兰伟豪. 5G通信6GHz以下频段FBAR滤波器镀膜关键技术研究. 硕士学位论文, 重庆邮电大学, 2019.
33 Chen P, Peng Q C, Zhao B G, et al. Conference Record of Piezoelectricity, Acoustic Waves, and Device Applications. Singapore, 2007, pp. 119.
34 Uesugi K, Hayashi Y, Shojiki K, et al. Applied Physics Express, 2019, 12(6), 65501.
35 Lu T Y, Yang Y P, Lo H H, et al. The International Journal of Advanced Manufacturing Technology, 2021,114, 1975.
36 Peng H D, Xu Y, Zhang Y C, et al. Piezoelectrics & Acoustooptics, 2019, 41(2), 170 (in Chinese).
彭华东, 徐阳, 张永川, 等. 压电与声光, 2019, 41(2), 170.
37 Liu X Y. Research on air-gap type film bulk acoustic resonator (FBAR) filter. Master's Thesis, South China University of Technology, China, 2020 (in Chinese).
刘鑫尧. 空腔型薄膜体声波谐振器FBAR滤波器研究. 硕士学位论文, 华南理工大学, 2020.
38 Strunin V I, Chirikov N A. Journal of Physics: Conference Series, 2020,1546, 12119.
39 Du B. Reseach on the cavity structure of bulk acoustic wave filter and its wideband technology. Ph.D. Thesis, University of Electronic Science and Technology of China, China, 2019 (in Chinese).
杜波. 空腔型体声波滤波器及其宽带化技术研究. 博士学位论文, 电子科技大学, 2019.
40 Artieda A, Barbieri M, Sandu C S, et al. Journal of Applied Physics, 2009,105, 24504.
41 Yin J H, Zhou B D, Li L, et al. Semiconductor Science and Technology, 2021,36, 45012.
42 Panda P, Ramaseshan R, Ravi N, et al. Materials Chemistry and Phy-sics, 2017,200, 78.
43 Pandey A, Kaushik J, Dutta S, et al. Thin Solid Films, 2018,666, 143.
44 钟慧, 王诗元, 彭春瑞, 等. 中国专利, CN201910230149.1, 2019.
45 Iriarte G F, Reyes D F, González D, et al. Applied Surface Science, 2011,257, 9306.
46 Chu F T, Li C, Wang Z Z, et al. Rare Metal Materials and Engineering, 2013, 42(10), 2023.
47 Jin H. Study on the problems of thin film body acoustic resonator (FBAR) technology. Ph.D. Thesis, Zhejiang University, China, 2006 (in Chinese).
金浩. 薄膜体声波谐振器(FBAR)技术的若干问题研究. 博士学位论文, 浙江大学, 2006.
48 Yang J C, Meng X Q, Yang C T, et al. Applied Surface Science, 2013,287, 355.
49 Ge S W, Zhang B Z, Yang C T. Surface and Coatings Technology, 2019,358, 404.
50 Yang J C, Meng X Q, Fu W J. Piezoelectrics & Acoustooptics, 2013, 35(6), 866 (in Chinese).
杨健苍, 孟祥钦, 付伍君. 压电与声光, 2013, 35(6), 866.
51 Kim J. Coatings, 2021,11, 443.
52 Jiao X, Shi Y, Zhong H, et al. Journal of Materials Science: Materials in Electronics, 2015, 26(2), 801.
53 Zang Y, Li L B, Ren Z Q, et al. Surface and Interface Analysis, 2016, 48(10), 1029.
54 Stan G, Botea M, Boni G, et al. Applied Surface Science, 2015,353, 1195.
55 Wang J, Zhang Q, Yang G, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(3), 3026.
56 Taurino A, Signore M, Catalano M, et al. Materials Letters, 2017,200, 18.
57 Jackson N, Olszewski O Z, Keeney L, et al. Conference Record of the 2015 International Conference on Microelectronic Test Structures (ICMTS). Tempe, 2015, pp. 193.
58 Zhang M, Yang J, Si C W, et al. Micromachines, 2015, 6(9), 1236.
[1] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[2] 李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
[3] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[4] 张亚南, 周子超, 张豪, 肖宇琦, 邓娜, 付彬芸, 多树旺. 工艺参数对等离子增强磁控溅射TiAlN涂层微观结构及性能的影响[J]. 材料导报, 2022, 36(24): 21010184-6.
[5] 李子晗, 赵超, 王闻宇, 金欣, 牛家嵘, 朱正涛, 林童. 蛋白质压电材料的研究进展[J]. 材料导报, 2022, 36(11): 20080182-8.
[6] 刘炘城, 邵海成, 乔冠军, 陆浩杰, 于刘旭, 张相召, 刘桂武. 氧化铝陶瓷表面连续导电金膜的制备工艺及性能[J]. 材料导报, 2021, 35(8): 8076-8081.
[7] 郦其乐, 杨勇, 魏玉全, 刘盟, 周洪军, 霍同林, 黄政仁. 不同B/C摩尔比碳化硼薄膜的光学性能[J]. 材料导报, 2021, 35(2): 2006-2011.
[8] 张庆, 刘呈坤, 毛雪, 吴月霞, 江志威, 赵丽, 洪洁. 压电纳米发电机材料选用和结构设计研究进展[J]. 材料导报, 2021, 35(11): 11066-11076.
[9] 卢建红, 邓小梅, 阎建辉, 涂继国, 王明涌, 焦树强. 2,2′-联吡啶对化学铜二元络合剂体系沉积过程的影响[J]. 材料导报, 2020, 34(Z2): 539-542.
[10] 余登德, 张仁耀, 沈月, 闻明, 刘洪喜1,. 混合表面纳米化制备钛表面Ru/Ti薄膜的结构及耐蚀性能[J]. 材料导报, 2020, 34(24): 24086-24091.
[11] 吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
[12] 汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
[13] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[14] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[15] 季鑫, 张朝民. CIGS叠层太阳能电池的中间层及稳定性的研究进展[J]. 材料导报, 2019, 33(23): 3915-3920.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed