Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 3915-3920    https://doi.org/10.11896/cldb.18110120
  无机非金属及其复合材料 |
CIGS叠层太阳能电池的中间层及稳定性的研究进展
季鑫1, 张朝民2
1 浙江大学硅材料国家重点实验室, 杭州 310027
2 上海工程技术大学数理与统计学院, 上海 201620
Review on the Interlayer and Stability of CIGS Tandem Solar Cell
JI Xin1, ZHANG Chaomin2
1 State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027
2 College of Mathematical and Statistics, Shanghai University of Engineering Science, Shanghai 201620
下载:  全 文 ( PDF ) ( 1381KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 叠层太阳能电池的问世开创了廉价、大面积、高效率太阳能电池制造与应用的新时代, 当前研究最深入、应用最广泛的叠层电池主要有非晶硅/微晶硅(α-Si∶H/mc-Si∶H)的硅基叠层电池以及GaInP/GaAs为代表的Ⅲ-Ⅴ族化合物叠层电池,但是这两类叠层电池在长期光照下性能会发生衰退,影响电池的实际应用。因此人们为制造高稳定性和良好匹配度的叠层电池进行了不懈的努力,包括改进电池制造工艺和开发新材料体系的叠层电池等。
铜铟镓硒(CIGS)是一种光吸收系数很高的材料且具有优异的光电性能,但CIGS叠层太阳能电池在光电转换过程中的衰减特别快,稳定性较差,远远达不到其理论效率;另外,CIGS硒化物的黄铜矿结构难以控制,导致其电学性能较差。将CIGS与Si电池叠加起来形成叠层电池,两者性能互补,既可提高CIGS材料的电导率,又可以拓宽Si电池的太阳光吸收波长范围。
本文归纳了CIGS叠层太阳能电池器件的研究进展,并总结了各种叠层电池的中间结合层AZO(ZnO∶Al)、FTO(SnO2∶F)、ITO(In2O3∶Sn)等的结构以及光电性能等方面的特点,从中间层、结构以及温度控制等方面论述了影响CIGS叠层太阳能电池稳定性的因素,分析了CIGS叠层太阳能电池面临的问题并展望了其前景,以期为制备稳定和高效率的新型CIGS叠层太阳能电池提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
季鑫
张朝民
关键词:  CuInGaSe2薄膜  叠层太阳能电池  磁控溅射  中间复合层  电池稳定性    
Abstract: The tandem solar cells have opened up a new era of the manufacture and application of low-cost, large-area and high-efficiency solar cell. The most in-depth and widely used tandem solar cells are mainly amorphous/microcrystalline silicon (α-Si∶H/mc-Si∶H) silicon-based tandem battery and Ⅲ-Ⅴ compound tandem battery (GaInP/GaAs), but the performance of these two types of tandem batteries will degrade on long-term illumination, which will affect their practical application. Therefore, people have made unremitting efforts to manufacture a high-stability and good-matching tandem battery, which included of improving the manufacturing process and developing the tandem battery of a new material system.
As a material with high light absorption coefficient, CIGS shows excellent photoelectric performance. However, CIGS tandem solar cells have a particularly fast attenuation and poor stability in the photoelectric conversion process so it cannot get the theoretical efficiency. In addition, the chalcopyrite structure of the CIGS selenium is difficult to control, which results in poor electrical properties. When the CIGS and Si batteries stacked to form a tandem battery, they are mutually complementary in properties. Si can improve the conductivity of the CIGS and CIGS can increase the wavelength range of the solar absorption of the Si.
This review offers a retrospection of the research efforts with respect to the CIGS tandem solar cells, and summarizes the structure, photoelectric properties of the intermediate bonding layers of various tandem batteries such as AZO (ZnO∶Al), FTO (SnO2∶F), and ITO (In2O3∶Sn). The factors affecting the stability of CIGS tandem cells are discussed from the aspects of interlayer, structure and temperature control. We then pay attention to the problems confronting the current state-of-the-art CIGS tandem cells. We have confidence that the CIGS tandem cells have a bright future in the development and innovation of photovoltaic devices with stable and high efficiency.
Key words:  CuInGaSe2 thin film    tandem solar cell    magnetron sputtering    intermediate composite layer    cell stability
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  TM914.4  
基金资助: 国家自然科学基金项目(51503121)
作者简介:  季鑫,上海工程技术大学副教授、硕士研究生导师。2004年7月本科毕业于南京师范大学物理科学与技术学院,2016年4月在上海大学材料学专业取得博士学位,2016—2018年在浙江大学硅材料国家重点实验室进行博士后研究工作。主要从事光电材料与器件的研究工作。近年来,在光电材料与器件领域发表论文30余篇,包括Applied Physical Letters、Surface EnigineeringFunctional Materials Letters等。
引用本文:    
季鑫, 张朝民. CIGS叠层太阳能电池的中间层及稳定性的研究进展[J]. 材料导报, 2019, 33(23): 3915-3920.
JI Xin, ZHANG Chaomin. Review on the Interlayer and Stability of CIGS Tandem Solar Cell. Materials Reports, 2019, 33(23): 3915-3920.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110120  或          http://www.mater-rep.com/CN/Y2019/V33/I23/3915
1 Shen H P, Duong T, Peng J, et al. Energy and Environmental Science,2018,11(2),394.2 Han Q, Hsieh YT, Meng L, et al. Science,2018,361( 6405),904.3 Fu F, Pisoni S, Weiss T P, et al. Advanced Science,2018,5(3),1700675.4 Kim K, Ahn S K, Choi J H, et al. Nano Energy,2018,48,345.5 Blakers A W, Wang A, Milne A M, et al. Applied Physics Letters,1989,55(13),1363.6 Chen H W, Pan X, Liu W Q, et al. Chemical Communications,2013,49,7277.7 Münzer K A, Holdermann K T, Schlosser R E, et al. IEEE Transactions on Electron Devices,1999,46(10),2055.8 Niraj N L, Thomas P W, Kylie R. IEEE Journal of Photovoltaics,2014,4(6),1380.9 Zhao J, Wang A, Green M A, et al. Applied Physics Letters,1998,73(14),1991.10 Lu J, Liu W, Werf C H M, et al. IEEE,2010,10,708.11 Todorov T, Gershon T, Gunawan O, et al. Advanced Energy Materials,2015,5(23),1500799.12 Liu D, Kelly T L. Nature Photonics,2014,8,133.13 Blakers A W, Wang A, Milne A M, et al. Applied Physics Letters,1989,55(13),1363.14 Haiyang H, Nuofu C, Ning L, et al. Micronanoelectronic Technology,2013,3,001.15 Guo Y, Cheng W, Jiang J, et al. Vacuum,2016,131,164.16 Song S, Yang T, Lv M, et al. Vacuum,2010,85(1),39.17 Yang T, Zhang Z, Song S, et al. Vacuum,2008,83(2),257.18 Du X, Li J, Bi X. Journal of Alloys and Compounds,2017,698,128.19 Aydin E, Sankir N D. Thin Solid Films,2018,653,29.20 Dang T V, Pamm S V N, Choi J, et al. Solar Energy Materials and Solar Cells,2017,163,58.21 Kumar M M D, MBaek S, Kim J, et al. Materials Letters,2014,137,132.22 Lin T C, Huang W C, Tsai F C, et al. Microelectronic Engineering,2017,167,85.23 Yu X, Yu X, Zhang J, et al. Solar Energy Materials and Solar Cells,2015,136,142.24 Ma H, Tian J, Bai S, et al. Electrochimica Acta,2014,137,138.25 Yu X, Yu X, Zhang J, et al. Materials Letters, 2014, 130,75.26 Icli K C, Yavuz H I, Ozenbas M, et al. Journal of Solid State Chemistry,2014,210(1),22.27 Li J, Zhang H, Wang W, et al. Condensed Matter,2016,500,48.28 INoh S, Ahn H J, Riu D H, et al. Ceramics International,2012,38(5),3735.29 Xie Y, Lu X, Huang W, et al. Applied Surface Science,2015,347,321.30 Li B, Yang G, Huang L, et al. Materials Research Bulletin,2018,108,151.31 Kim T H, Park S H, Kim D H, et al. Solar Energy Materialsand Solar Cells,2017,160,203.32 Jeong J A, Kim H K. Solar Energy Materials and Solar Cells,2009,93(10),1801.33 Inpor K, Photiphitak C, Thanachayanont C. Current Applied Physics,2012,12,s198.34 Miller M J, Wang J. Solar Energy Materials and Solar Cells,2016,154,88.35 Montesdeoca-Santana A, Jiménez-Rodríguez E, Marrero N, et al. Beam Interactions with Materials and Atoms,2010,268(3-4),374.36 Kim H S, Kumar M D, Patel M, et al. Sensors and Actuators A: Physical,2016,252,35.37 Kim S, Jung J, Lee Y J, et al. Materials Research Bulletin,2014,58,83.38 Geethu R, Sudha Kartha C, Vijayakumar K P. Solar Energy,2015,120,65.39 Jeong W S, Lee J W, Jung S, et al. Solar Energy Materials & Solar Cells,2011,95,3419.40 Lee B K, Kim J J. Current Applied Physics,2009,9,404.41 Xin Ji. The research of the preparation, selenizated and photoelectrical mechanism of CuInSe2 thin film solar cell prepared by whole magnetron sputtering. Ph.D. Thesis, Shanghai University, China,2016(in Chinese).季鑫.全溅射法CuInSe2太阳能电池的制备、硒化机制和光电机理研究.博士学位论文,上海大学,2016.
[1] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[2] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[3] 杨秀钰, 陈诺夫, 张航, 陶泉丽, 徐甲然, 陈梦, 陈吉堃. 对非晶硅薄膜进行快速磷扩散以获得本征薄层异质结[J]. 材料导报, 2019, 33(20): 3353-3357.
[4] 孙科学, 常月欣, 成谢锋. xBiInO3-(1-x)PbTiO3薄膜的横向压电特性[J]. 材料导报, 2019, 33(14): 2299-2304.
[5] 白园蕊, 马建中, 刘俊莉, 鲍艳, 崔万照, 胡天存, 吴朵朵. 基于胶体晶体构筑银纳米薄膜及其抑制微放电性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 515-519.
[6] 刘涛, 马垒, 赵世谦, 马冬冬, 李林, 成钢. 沉积厚度对L10-FePd颗粒膜结构和磁性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 525-527.
[7] 贺凯, 陈诺夫, 魏立帅, 王从杰, 陈吉堃. 退火对铝诱导结晶锗薄膜的影响及其机理[J]. 材料导报, 2018, 32(15): 2571-2575.
[8] 康淮,陆轴,钟志有,龙浩. 磁控溅射制备镁镓共掺氧化锌透明半导体薄膜及其性能研究[J]. 《材料导报》期刊社, 2018, 32(11): 1938-1942.
[9] 房迪, 肖清泉, 廖杨芳, 袁正兵, 王善兰, 吴宏仙. 钠钙玻璃上Mg2Si薄膜的制备及其电学性质*[J]. 《材料导报》期刊社, 2017, 31(4): 9-13.
[10] 李家节, 郭诚君, 周头军, 饶先发, 周慧杰, 杨斌. 烧结钕铁硼磁体溅射渗镝工艺与磁性能研究*[J]. 《材料导报》期刊社, 2017, 31(4): 17-20.
[11] 陈亚军, 郁佳琪, 赵婕宇, 王付胜. 磁控溅射高温固体自润滑涂层的研究与进展*[J]. 《材料导报》期刊社, 2017, 31(3): 32-37.
[12] 高正源, 胡琳盛, 刘 浪, 任 毅, 李辉君. 从工艺参数角度探讨AZ系镁合金表面磁控溅射单层铝及氧化铝膜的耐腐蚀和耐磨损性能[J]. 材料导报, 2017, 31(1): 90-96.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed