Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2229-2236    https://doi.org/10.11896/cldb.18060105
  金属与金属基复合材料 |
储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展
闫静1,田晓1,赵宣1,赵丽娟1,杨艳春1,陈均2
1 内蒙古师范大学物理与电子信息学院, 功能材料物理与化学自治区重点实验室,呼和浩特 010022
2 北京大学化学与分子工程学院,北京100871
Research Progress of Hydrogen Storage Alloy as Anode Catalyst for Direct Borohydride Fuel Cell
YAN Jing1, TIAN Xiao1, ZHAO Xuan1, ZHAO Lijuan1, YANG Yanchun1, CHEN Jun2
1 Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, School of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022
2 College of Chemistry and Molecular Engineering, Peking University, Beijing 100871
下载:  全 文 ( PDF ) ( 6677KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 直接硼氢化物燃料电池(DBFC)是一种可以直接将化学能转化成电能的新型燃料电池,该类电池因具有理论电压高、能量密度大、环境污染小等优点而备受关注。然而,在DBFC工作的过程中,BH4-容易发生水解而释放出氢气,导致实际转移的电子数目减少,燃料利用率降低,同时生成的氢气还会给电池带来隐患。研究表明,DBFC的性能很大程度取决于硼氢化物分子在DBFC阳极上发生的电化学反应, 而阳极上的电化学反应又直接受阳极催化剂的控制。因此,阳极催化剂是影响DBFC电化学性能的关键因素。以往研究者们多采用贵金属单质(例如Au、Pt、Ag、Pd等)或贵金属合金作为DBFC阳极催化剂,也有的采用过渡金属(例如Ni)。贵金属催化剂具有优异的催化性能,但高昂的成本限制了它们的广泛应用。过渡金属成本较低,但其催化性能却不够突出。因此,阳极催化剂的选择是DBFC能否广泛应用的关键。
近年来,具有可逆吸、放氢性能的储氢合金由于其特殊的储氢特性引起了DBFC研究者们的极大关注,他们将储氢合金用作DBFC阳极催化剂。研究表明,储氢合金除了具有与贵金属催化剂相类似的催化能力外,还能将DBFC工作过程中发生的水解副反应释放出来的氢吸附(或存储),并在一定条件下再将氢以电能的形式释放出来,从而提高了燃料的利用率。此外,储氢合金作为DBFC阳极催化剂,不仅降低了原材料成本,还抑制了水解副反应,从而提高了燃料的利用率,同时该合金在稳定性方面也有一定的优势。为进一步发挥储氢合金的催化性能,研究者们对储氢合金进行表面修饰、晶体结构改变、成分优化等多角度研究。理论和实验研究证明,储氢合金是一种具有应用潜力的DBFC非贵金属催化剂。
本文在简要说明DBFC工作原理、介绍储氢合金吸放氢机理以及储氢合金作为DBFC阳极催化剂反应机制的基础上,综述了近年来储氢合金作为DBFC阳极催化剂的研究进展,特别对比了近年来研究比较多的AB5型和AB2型储氢合金作为DBFC阳极催化剂的性能。最后指出了储氢合金作为DBFC阳极催化剂存在的问题和未来发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫静
田晓
赵宣
赵丽娟
杨艳春
陈均
关键词:  直接硼氢化物燃料电池  储氢合金  阳极催化剂  水解    
Abstract: Direct borohydride fuel cell (DBFC) is a new kind of fuel cell that can convert chemical energy directly into power.This battery has been paid much attention because of its high theoretical voltage, high energy density, less pollution to environment and so on. However, in the process of working in DBFC, since BH4- is prone to hydrolysis and releases hydrogen, the number of actually transferred electrons is reduced, the fuel utilization rate is lowered, and the generated hydrogen gas also brings hidden danger to the battery. Studies have shown that the performance of DBFC largely depends on the electrochemical reaction of borohydride molecules at the anode, while the electrochemical reaction on the anode is directly controlled by the anode catalyst. So that, the anode catalyst is the key factor affecting DBFC electrochemical performance. In the past, people usually used precious metals (such as Au, Pt, Ag, Pd, etc.) or precious metal alloys as the anode catalyst of DBFC, and some have used transition metals (such as Ni). Although the precious metal catalyst has good catalytic properties, it cannot be widely used because of its cost problem. In spite of the transition metal has low cost, its catalytic performance is not outstanding enough. Therefore, the choice of anode catalyst is the key to the wide application of DBFC.
In recent years, hydrogen storage alloys with reversible hydrogen absorption and release properties have attracted great attention from DBFC researchers due to their special hydrogen storage characteristics, so thatresearchers have took hydrogen storage alloys as anode catalysts of DBFC. Studies have shown that in addition to the direct catalytic ability similar to noble metal catalysts, hydrogen storage alloys can also adsorb (or storage) hydrogen released from the hydrolysis side reactions that occur during DBFC operation, and then released in the form of electrical energy under certain conditions, thus improving fuel utilization. In addition, as anode catalyst of DBFC, hydrogen storage alloys not only reduce the cost of raw materials, inhibit the side reaction and improve the fuel efficiency, but also have some advantages in stability. In order to make full use of the catalytic properties of hydrogen storage alloys, people have tried to modify the surface of the hydrogen storage alloy, change the crystal structure, optimize the composition and other multiple methods. Theory and experiment studied show that hydrogen storage alloy is a DBFC non-precious metal catalyst with potential application.
In this paper, the working principle of DBFC, the mechanism of hydrogen absorption and desorption of hydrogen storage alloy and the reaction mechanism of hydrogen storage alloy as anode catalyst of DBFC are briefly introduced. The research progress of hydrogen storage alloy as anode catalyst of DBFC in recent years is reviewed. The performance of AB5 and AB2 hydrogen storage alloys as anode catalysts of DBFC is studied, especially in recent years. Finally, the problems and future development trends of hydrogen storage alloys as anode catalysts of DBFC are pointed out.
Key words:  direct borohydride fuel cell (DBFC)    hydrogen storage alloy    anode catalyst    hydrolysis
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  TG113.25  
基金资助: 内蒙古自治区高等学校科学技术研究项目(NJZZ17040);内蒙古自然科学基金(2014MS0542);国家自然科学基金(51661027);内蒙古自治区大学生创新训练项目(201710135006);内蒙古师范大学科研项目(2017ZRYB005)
作者简介:  闫静,2016年6月毕业于商丘工学院,获得工学学士学位。现为内蒙古师范大学物理与电子信息学院研究生,在田晓教授的指导下进行研究。目前主要研究领域为储氢材料。
田晓,内蒙古师范大学物理与电子信息学院教授、硕士生导师。2010年在内蒙古工业大学获博士学位,2011—2015年在内蒙古大学进行博士后研究工作。2015—2016年在北京大学化学与分子工程学院做访问学者。主要从事新能源材料、磁性材料的研究。近年来,在新能源材料和磁性材料领域发表论文40多篇,部分研究成果发表在Int.J.Hydrogen Energy、J.Alloys Compd、J.Mater.Eng.Perform、《无机材料学报》、《稀有金属材料与工程》和《材料导报》等重要杂志,出版了《金属储氢电极》学术专著。
引用本文:    
闫静, 田晓, 赵宣, 赵丽娟, 杨艳春, 陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
YAN Jing, TIAN Xiao, ZHAO Xuan, ZHAO Lijuan, YANG Yanchun, CHEN Jun. Research Progress of Hydrogen Storage Alloy as Anode Catalyst for Direct Borohydride Fuel Cell. Materials Reports, 2019, 33(13): 2229-2236.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060105  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2229
1 Li X L, Wang X J, Zhao J, et al. Materials Review A:Review Papers, 2018, 32(4), 1057 (in Chinese).李旭力, 王晓静, 赵君,等.材料导报:综述篇, 2018, 32 (4), 1057.2 Xiao Y P, Wang X F, Pinson P, et al. IEEE Transactions on Power Systems, 2018, 33 (4), 3898.3 Rosen M A, Koohi-Fayegh S. Energy, Ecology and Environment,2016, 1(1), 10. 4 Jiang X J, Wu Y, Fu K, et al. Intermetallics, 2018, 95, 73.5 Ma J, Choudhury N A, Sahai Y. Renewable and Sustainable Energy Reviews, 2010, 14(1), 183.6 Wang J Y , Wang H L , Fan Y I. Engineering, 2018, 4, 352.7 Wang S Y, Jiang S P. National Science Review,2017, 4(2), 163.8 Merino-Jimenez I, De Leon C P, Shah A A, et al. Journal of Power Sources, 2012, 219, 339.9 Olu P Y, Job N, Chatenet M, et al. Journal of Power Sources, 2016, 327, 235.10 Gao X Y, Ma J F, Xue W, et al. CIESC Journal, 2017, 68(5), 0438(in Chinese).高翔宇, 马金福, 薛伟, 等. 化工学报, 2017, 68(5), 0438.11 Feng R X, Cao Y L, Ai X P, et al. Acta Physico-chimica sinica, 2007, 23(6), 932(in Chinese).冯瑞香,曹余良,艾新平,等.物理化学学报, 2007, 23(6), 932.12 Sanli A E, Yilmaz E S, Ozden S K, et al. International Journal of Hydrogen Energy, 2018, 43(2), 992.13 Atwan M H, Macdonald C L B, Northwood D O, et al. Journal of Power Sources, 2006, 158(1), 36.14 Cheng H, Scott K. Electrochimica Acta, 2006, 51(17), 3429.15 Liu B H, Li Z P, Suda S. Electrochimica Acta, 2004, 49(19), 3097.16 Liu B H, Li Z P. Journal of Power Sources, 2009, 187(2), 527.17 Lee H M, Park S Y, Park K T, et al. Research on Chemical Interme-diates,2008, 3(8-9), 787.18 Lam V W S, Kannangara D C W, Alfantazi A, et al. Journal of Power Sources, 2012, 212, 57.19 Coowar F A, Vitins G, Mepsted G O, et al. Journal of Power Sources, 2008, 175(1), 317.20 Karadag C I, Behmenyar G, Boyaci San F G, et al. Fuel Cells, 2015, 15(2), 262.21 Merino-Jimenez I, Janik M J, Leon C P, et al. Journal of Power Sources, 2014, 269, 498.22 Yi L H, Wei W, Zhao C X, et al. Electrochimica Acta, 2015, 158, 209.23 Yu D M, Shen Y, Ye Z, et al. Chinese Science Bulletin, 2013, 58(20), 2435.24 He P Y, Wang X Y, Fu P, et al. International Journal of Hydrogen Energy, 2011, 36, 8857.25 Yi L H, Wei W, Zhao C X, et al. Journal of Power Sources, 2015, 285, 325.26 Duan D H, You X, Liang J W, et al. Electrochimica Acta, 2015, 176, 1126.27 Celikkan H, Sahin M, Aksu M L, et al. International Journal of Hydrogen Energy, 2007, 32(5), 588.28 Liu B H, Li Z P, Arai K, et al. Electrochimica Acta, 2005,50(18), 3719.29 Züttel A. Materials Today, 2003, 6(9), 24.30 Wang L B, Ma C A,Mao X B, et al. Electrochemistry Communications, 2005, 7, 1477.31 Wang L B, Ma C A, Sun Y M, et al. Journal of Alloy and Compounds, 2005, 391, 318.32 Wang G L, Wang X Y, Miao R R, et al. International Journal of Hydrogen Energy, 2010, 35, 1227.33 Yang Z Z, Wang L B, Gao Y F, et al. Journal of Power Sources, 2008, 184, 260.34 Wang L B, Ma C A, Mao X B, et al. Journal of Materials Science and Technology, 2005, 31(6), 831.35 Liu B H, Suda S. Journal of Alloys and Compounds, 2008, 454, 280.36 Lota G, Sierczynska A, Acznik I, et al. International Journal of Electrochemical Science, 2014, 9(2), 659.37 Zhang D M, Wang G L, Cheng K, et al. Journal of Power Sources, 2014, 245, 482.38 Li S, Yang X D, Zhu H Y, et al. Journal of Materials Science and Technology, 2011, 27(12), 1089.39 Choudhury N A, Sahai Y, Buchheit R G. Electrochemistry Communications, 2011, 13(1), 1.40 Wang L B, Ma C A, Mao X B. Journal of Alloys and Compounds, 2005, 397(1-2),313.41 Gras M, Sierczynska A, Lota K, et al. Ionics, 2016, 22, 2539.42 Zhan X Y. Studies on the anode catalyst for direct borohydride fuel cells. Master's Thesis, Zhejiang University of Technology, China, 2011(in Chinese).詹星月. 直接硼氢化物燃料电池阳极催化剂研究. 硕士学位论文, 浙江工业大学, 2011.43 Ni X M, Wang Y, Cao Y L, et al. Electrochemistry Communications,2010, 12, 710.44 Ma J F, Wang J, Liu Y N. Journal of Power Sources, 2007, 172, 220.45 Ma J F, Liu Y N, Zhang P, et al. Electrochemistry Communication, 2008, 10, 100. 46 Ni X M, Wang Y D, Guo F, et al.Journal of Rare Earths, 2012, 30(5),437.47 Liu Y, Liu Y N, Ma J F, et al. Journal of Power Sources, 2010, 195, 1854.48 Liu Y, Ma J F, Lai J H, et al. Journal of Alloy and Compounds, 2009, 488, 204.49 Duan D H, Sun Y P. Progress in Chemistry, 2010, 22(9), 1720.50 Raman R K, Prashant S K, Shukla A K. Journal of Power Sources, 2006, 162, 1073.51 Raman R K, Shukla A K. Fuel Cells, 2007, 7(3),225.52 Raman R K, Shukla A K. Journal of Applied Electrochemistry, 2005, 35, 1157.53 Wang Y G, Xia Y Y. Electrochemistry Communications, 2006, 8(11), 1775.54 Selvarani G, Prashant S K, Sahu A K, et al. Journal of Power Sources, 2008, 178, 86.55 Ma J F, Liu Y, Liu Y, et al. Fuel Cells, 2008, 8(6),394.56 Kim C, Kim K J, Ha M Y. Journal of Power Source, 2008, 180, 154.57 Lee S M, Kim J K, Lee H H, et al. Journal of the Electrochemical Society, 2002, 149(5), A603.58 Li Z P, Liu B H, Arai K, et al. Journal of the Electrochemical Society, 2003, 150(7), A868.59 Liu B H, Li Z P. Journal of Power Sources, 2009, 187(2), 291.60 Li Z P, Liu B H, Arai K, et al. Journal of Power Sources, 2004, 126, 28.61 Choudhury N A, Raman R K, Sampath S, et al. Journal of Power Sources, 2005, 143, 1.62 Liu B H, Li Z P, Kitani R, et al. Journal of Alloys and Compounds, 2002,(330-332), 825.63 Liu B H, Li Z P, Higuchi E, et al. Journal of Alloys and Compounds, 1999, (293-295), 702.64 Wang L B, Zhan X Y, Yang Z Z, et al. Chinese Journal of Chemical Engineering, 2011, 19(4), 693.
[1] 司伟, 丁超, 潘伟. 聚丙烯酸铵和柠檬酸铵分散剂对钇铝石榴石陶瓷透光率的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1209-1212.
[2] 邓安强, 罗永春, 王浩, 赵磊, 罗元魁. 退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1[J]. 材料导报, 2018, 32(15): 2565-2570.
[3] 桑琬璐, 李兰兰, 高若源, 王晨阳, 杨晓婧. 氨硼烷水解制氢催化剂载体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 27-33.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed