Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20120259-4    https://doi.org/10.11896/cldb.20120259
  无机非金属及其复合材料 |
粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征
李彤1,2, 赵卓1,2, 武俊生1,2, 方方1, 周艳文2
1 辽宁科技大学化学工程学院,辽宁 鞍山 114051
2 辽宁科技大学表面工程研究所,辽宁 鞍山 114051
Fabrication and Characterization of the ZnO/Cu/ZnO by Magnetron Sputtering Using Powder Targets
LI Tong1,2, ZHAO Zhuo1,2, WU Junsheng1,2, FANG Fang1, ZHOU Yanwen2
1 School of Chemistry Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
2 Institute of Surface Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
下载:  全 文 ( PDF ) ( 6993KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 室温下,采用射频磁控溅射氧化锌(ZnO)粉末靶和铜(Cu)靶,在玻璃衬底上制备ZnO/Cu/ZnO透明导电薄膜。通过改变Cu层厚度,研究其对ZnO/Cu/ZnO薄膜光电性能的影响。结果表明:ZnO/Cu/ZnO表面相对平整,结晶程度较好,在可见光范围内,当Cu厚度为11 nm和14 nm时,ZnO/Cu/ZnO薄膜的最高透光率分别为79%和74%;当Cu厚度为14 nm时,其载流子浓度及带电粒子运动能力分别为4.85×1021 cm-3和6.73 cm2·V-1·s-1。与ZnO/Ag/ZnO薄膜相比,ZnO/Cu/ZnO需要更厚的铜薄膜才能连续,而具有较薄Ag层的ZnO/Ag/ZnO有比ZnO/Cu/ZnO更优良的光电性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李彤
赵卓
武俊生
方方
周艳文
关键词:  透明导电薄膜  粉末靶  射频磁控溅射  光电薄膜    
Abstract: At room temperature, ZnO/Cu/ZnO transparent conductive films were prepared on glass substrate by radio frequency magnetron sputtering of zinc oxide (ZnO) powder and copper (Cu) targets. The effect of the thickness of Cu layer on the photoelectric properties of ZnO/Cu/ZnO thin film were studied. The results showed that the surface of ZnO/Cu/ZnO films were relatively flat and had a good degree of crystallinity; in the visible light range, when the thicknesses of Cu are 11 nm and 14 nm, the achieved highest transmittance of ZnO/Cu/ZnO films were 79% and 74%; when the thickness of Cu is 14 nm, carrier concentration and the motion ability of charged particles are 4.85×1021 cm-3 and 6.73 cm2·V-1·s-1 respectively. Compared with ZnO/Ag/ZnO films, ZnO/Cu/ZnO required a thicker copper film to be continuous. ZnO/Ag/ZnO with a thinner Ag layer has better optoelectronic performance than ZnO/Cu/ZnO.
Key words:  transparent conductive film    powder target    RF magnetron sputtering    thin-film photovoltaics
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  0484.4  
  TM24  
基金资助: 国家自然科学基金(51672119;51972155)
通讯作者:  zhouyanwen@ustl.edu.cn   
作者简介:  李彤,2012年于辽宁科技大学获得学士学位,现为辽宁科技大学化工学院博士研究生,主要从事透明导电薄膜材料制备及性能方面的研究。
周艳文,1988年于东北大学金属物理专业获得学士学位,2005年于英国索尔福德大学获得博士学位。现任辽宁科技大学化工学院教授、博士研究生导师。主要从事薄膜材料制备及应用方面的研究。先后获批4项国家自然科学基金面上项目,发表 SCI、EI 检索论文50余篇,获专利授权10余项。
引用本文:    
李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
LI Tong, ZHAO Zhuo, WU Junsheng, FANG Fang, ZHOU Yanwen. Fabrication and Characterization of the ZnO/Cu/ZnO by Magnetron Sputtering Using Powder Targets. Materials Reports, 2022, 36(6): 20120259-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120259  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20120259
1 Fortunato E, Ginley D, Hosono H, et al. MRS Bulletin, 2007, 32(3), 242.
2 Dang T V, Pammi S V N, Choi J, et al. Solar Energy Materials and Solar Cells, 2017, 163, 58.
3 Yuan K D, Wu J J, Liu M L, et al. Applied Physics Letters, 2008, 93(13), 142.
4 Mereu B, Caglar O, Cashmore J S, et al. Solar Energy Materials & Solar Cells, 2016, 152, 47.
5 Hood T G, Vincent S M, Mellentin S W. US Patent, US4613530, 1986.
6 Chen D, Xi H, Zhang C, et al. IEEE Photonics Journal, 2018, 10(2), 1.
7 Liu Z, Xu Q, Gu J H, et al. Journal of Vacuum Science and Technology, 2017, 37(2), 161 (in Chinese).
刘智, 徐晴, 谷锦华, 等.真空科学与技术学报, 2017, 37(2), 161.
8 Bender M, Seelig W, Daube C, et al. Thin Solid Films, 1998, 326(1-2), 67.
9 Lian J Q, Wang L J, Wang X P, et al. Journal of Functional Materials, 2017, 48(1), 1056 (in Chinese).
廉吉庆, 王丽军, 王小平, 等.功能材料, 2017, 48(1), 1056.
10 Stella Van Eek, Xia Yan, Weimin Li, et al. Japanese Journal of Applied Physics, 2017, 56, 08MA12-1.
11 Cai X. Journal of Functional Materials, 2007, 4(2), 1 (in Chinese).
蔡珣. 功能材料, 2007, 4(2), 1.
12 Cai X, Wang Z G. Journal of Functional Materials, 2005, 2(1), 15 (in Chinese).
蔡珣, 王振国.功能材料, 2005, 2(1), 15.
13 Li W Y, Jiang L X, Yin G L, et al. Rare Metals, 2013, 32(3), 273.
14 Sharma V, Kumar P, Kumar A, et al. Solar Energy Materials & Solar Cells, 2017, 169, 122.
15 Jun Ho Kim, Jeong Hwan Lee, Sang-Woo Kim, et al. Ceramics International, 2015, 41, 7146.
16 Fang G J, Li D J, Yao B L. Physica Status Solidi, 2015, 193(1), 139.
17 Zhao Z, Zhou Y W, Liu Y. Journal of Vacuum Science and Technology, 2010, 30(3), 256 (in Chinese).
赵卓, 周艳文, 刘悦. 真空科学与技术学报, 2010, 30(3), 256.
18 Zhou Y, Kelly P, Sun Q B. Thin Solid Films, 2008, 516(12), 4030.
19 Li T, Zhou Y W, Wang Y X, et al. Chinese Journal of Luminescence, 2018, 39(9), 1272 (in Chinese).
李彤, 周艳文, 王艳雪, 等. 发光学报, 2018, 39(9), 1272.
20 Wang Y P, Lu J G, Bie X, et al. Applied Surface Science, 2011, 257 (14), 5966.
21 Li W Y. Preparation and properties of ZnO/Cu/ZnO transparent conductive film. Master's Thesis, Shanghai Jiaotong University, China, 2013 (in Chinese).
李文英. ZnO/Cu/ZnO透明导电薄膜的制备及性能研究.硕士学位论文, 上海交通大学, 2013.
22 Shao J D, Yi K, Fan Z X, et al. Journal of Physics, 1997, 46(11), 2258 (in Chinese).
邵建达, 易葵, 范正修, 等. 物理学报, 1997, 46(11), 2258.
23 Fan P, Shao J D, Yi K, et al. Acta Photonica Sinica, 2006(10), 1542 (in Chinese).
范平, 邵建达, 易葵, 等.光子学报, 2006(10), 1542.
24 Galdikas A. Thin Solid Films, 2002, 418(2), 112.
25 Xu S, Lu G Q. Journal of Materials Science Letters, 1994, 13(22), 1629.
26 Xu S, Evans B L, Flynn D I, et al. Thin Solid Films, 1994, 238(1), 54.
27 Guillén C, Herrero J. Solar Energy Materials and Solar Cells, 2008, 92(8), 938.
28 Zhao G, Song M, Chung H S, et al. ACS Applied Materials & Interfaces, 2017, 9(44), 38695.
29 Jeong E, Bae S, Park J B, et al. RSC Advances, 2019, 9(16), 9160.
30 Yun J. Advanced Functional Materials, 2017, 27(18), 1606641.
31 Ehrenreich H, Philipp H R. Physical Review, 1962, 128(4), 1622.
[1] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[2] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[3] 孙科学, 常月欣, 成谢锋. xBiInO3-(1-x)PbTiO3薄膜的横向压电特性[J]. 材料导报, 2019, 33(14): 2299-2304.
[4] 刘萍, 曾葆青, 王亚雄, 汪江浩. 纳米线透明导电薄膜的制备及在光电器件中的应用*[J]. 《材料导报》期刊社, 2017, 31(7): 6-18.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed