Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20120257-7    https://doi.org/10.11896/cldb.20120257
  无机非金属及其复合材料 |
金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用
赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良
太原理工大学化学化工学院,洁净化工研究所,太原 030024
Application of Layered Co3O4 /C Derived from Metal-organic Framework in Lithium-sulfur Batteries
ZHAO Wenwen, WANG Yunfang, DUAN Donghong, LIU Shibin, ZHOU Xianxian, CHEN Liang
Institute of Clean Technique for Chemical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 6198KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过对层状金属有机骨架(Metal-organic framework 71,MOF-71) 前驱体先碳化后氧化的方法合成了四氧化三钴/碳复合纳米颗粒。将制得的纳米颗粒与硫复合后借助四氧化三钴的极性优势能对多硫化锂产生很强的亲和力,可以抑制穿梭效应。通过对材料进行物理表征和电化学测试发现,氧化温度对Co3O4/C 结构形貌有较大的影响,高温氧化所制备的Co3O4/C 材料粒径约50 nm,平均孔径为17.44 nm,多层网状结构有利于提升电池容量和稳定性。以Co3O4/C为正极基质负载硫组装的锂硫电池,在0.2C放电倍率下,首圈放电比容量为1 142.2 mAh·g-1;在0.5C电流密度下循环300圈,其库仑效率仍保持在98%以上,该锂硫电池表现出优异的电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵文文
王韵芳
段东红
刘世斌
周娴娴
陈良
关键词:  金属有机骨架  锂硫电池  穿梭效应  四氧化三钴  多硫化锂    
Abstract: Cobalt tetroxide/carbon composite nanoparticles were synthesized by a method of oxidizing layer-shaped MOF-71 precursor primary carbonization. By virtue of the polar advantage of cobalt tetroxide, the prepared nanoparticles can have a strong affinity for lithium polysulfide and inhibit the shuttle effect. Through physical characterization and electrochemical test of the material, it is found that the oxidation temperature has a greater impact on the shape of the Co3O4/C structure and the particle size of the Co3O4/C material prepared by high temperature oxidation is about 50 nm, the average pore size of which is 17.44 nm. Multi-layered reticular structure is conducive to improving battery capacity and stability. Discharge specific capacity of lithium sulfur batteries assembled with Co3O4/C as positive matrix loaded with sulfur is 1 142.2 mAh·g-1 in the first cycle at a discharge rate of 0.2C. After cycled 300 times at the current density of 0.5C, the Coulombic efficiency remains above 98%, lithium sulfur batteries exhibiting excellent electrochemical performance.
Key words:  metal organic framework    lithium sulfur battery    shuttle effect    cobalt tetroxide    lithium polysulfide
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  O646  
基金资助: 山西省重点研发计划项目(201803D121120);山西省应用基础研究计划项目(201901D211064)
通讯作者:  wangyunfang@tyut.edu.cn;dhduan@163.com   
作者简介:  赵文文,太原理工大学化学化工学院硕士研究生,师从王韵芳副教授和段东红副教授。目前从事锂硫电池硫正极材料制备及性能研究。
王韵芳,博士,副教授,2011年获得太原理工大学工学博士学位。在国内主要学术刊物上发表论文10篇(其中SCI、EI收录6篇)。主要研究光催化材料在能源、生物等领域的应用。
段东红, 博士,副教授,2010年获太原理工大学化学工程专业博士学位。1996年至今在太原理工大学工作,共发表SCI学术论文50余篇,申请国家发明专利23项,授权18项。主要从事电催化和电化学储能研究。
引用本文:    
赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
ZHAO Wenwen, WANG Yunfang, DUAN Donghong, LIU Shibin, ZHOU Xianxian, CHEN Liang. Application of Layered Co3O4 /C Derived from Metal-organic Framework in Lithium-sulfur Batteries. Materials Reports, 2022, 36(6): 20120257-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120257  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20120257
1 Kubota K, Komaba S. Journal of the Electrochemical Society, 2015, 162(14), A2538.
2 Zhou G, Li L, Zhang Q, et al. Physical Chemistry Chemical Physics, 2013, 15(15),5582.
3 Bruce P G, Freunberger S A, Hardwick L J, et al. Nature Materials, 2012, 11(1), 19.
4 Diao Y, Xie K, Hong X, et al. Acta Chimica Sinica, 2013, 71, 508.
5 Chen Z, Zhang Z, Liu C, et al. Journal of Materials Chemistry A, 2020, 8(3),1010.
6 Zheng Y, Zheng S, Xue H, et al. Journal of Materials Chemistry A, 2019, 7(8), 3469.
7 Fan C, Yan Y, Chen L, et al. Progress in Chemistry, 2019, 31, 1166.
8 Rao D, Yang S, Yan X. Journal of Physical Chemistry C, 2020, 124(10), 5565.
9 Hong X, Wang R, Liu Y, et al. Journal of Energy Chemistry, 2020, 42(3), 144.
10 Ji X, Lee K T, Nazar L F. Nature Materials, 2009, 8(6), 500.
11 Seh Z W, Li W, Cha J J, et al. Nature Communications, 2013, 4, 1331.
12 Jha H, Buchberger I, Cui X, et al. Journal of the Electrochemical Society, 2015, 162(9), A1829.
13 Wang Y, Lin C F, Rao J, et al. ACS Applied Materials and Interfaces, 2018, 10(29), 24554.
14 Cai J, Song Y, Chen X, et al. Journal of Materials Chemistry A, 2020, 8(4), 1757.
15 Li S, He J, Chen Y. Energy and Environmental Science, 2018, 11, 2560.
16 Sun K, Wu Q, Tong X, et al. ACS Applied Energy Materials, 2018, 1(6), 2608.
17 Markelj J, Drvari S, Košir U, et al. Electrochimica Acta, 2020, 363, 137227.
18 Feng S, Zhong H, Song J, et al. ACS Applied Energy Materials, 2018, 1, 7014.
19 Liang X, Kwok C Y, Lodi-Marzano F, et al. Advanced Energy Materials, 2016, 6(6), 1501636.
20 Liang X, Hart C, Pang Q, et al. Nature Communications, 2015, 6, 5682.
21 Lim W G, Kim S, Jo C, et al. Angewandte Chemie International Edition, 2019, 58(52), 18746.
22 Xu J, Zhang W, Chen Y, et al. Journal of Materials Chemistry A, 2018, 6(6), 2797.
23 Zhong Y, Yang K R, Liu W, et al. Journal of Physical Chemistry C, 2017, 121(26), 14222.
24 Chang Z, Dou H, Ding B, et al. Journal of Materials Chemistry A, 2017, 5(1), 250.
25 Bigdeli H, Moradi M, Hajati S, et al. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 94, 158.
26 Dong X, Su Y, Lu T, et al. Sensors and Actuators B: Chemical, 2018, 258, 349.
27 Wang X, Wu X L, Guo Y G, et al. Advanced Functional Materials, 2010, 20(10), 1680.
28 Salhabi E H M, Zhao J, Wang J, et al. Angewandte Chemie, 2019, 131(27), 9176.
29 Du X, Pan H, Yang Z. New Journal of Chemistry, 2018, 42(6), 4215.
30 Yan J, Wei T, Qiao W, et al. Electrochimica Acta, 2010, 55, 6973.
31 Wang J, Wang H, Li F, et al. Journal of Materials Chemistry A, 2019, 7(7), 3024.
32 Zhu Y P, Ma T Y, Jaroniec M, et al. Angewandte Chemie, 2017, 56(5), 1324.
33 Ren Q, Mo S, Peng R, et al. Journal of Materials Chemistry A, 2018, 6, 498.
34 Han W, Zhao H, Dong F, et al. Nanoscale, 2018, 10(45), 21307.
35 Hu X, Hu H, Li C, et al. Journal of Solid State Chemistry, 2016, 242, 71.
36 Zhang Z, Huang Y, Gao X, et al. ACS Applied Energy Materials, 2020, 3, 6205.
37 Tu J, Li H, Chen S, et al. ACS Sustainable Chemistry and Engineering, 2020, 8(18), 6964.
38 Liu X, He Q, Yuan H, et al. Journal of Energy Chemistry, 2020, 48, 109.
39 Rehman S, Gu X, Khan K, et al. Advanced Energy Materials, 2016, 6(12), 1502518.
40 Li X, Ma Y, Tang C. International Journal of Electrochemical Science, 2019, 14, 3245.
41 Zu C, Manthiram A. Advanced Energy Materials, 2013, 3(8), 1008.
42 Xiao Z, Yang Z, Wang L, et al. Advanced Materials, 2015, 27, 2891.
43 Jin G, He H, Wu J, et al. Journal of Inorganic Materials, 2021, 36(2), 203.
44 Zhang Z, Yi Z, Liu L, et al. Nanomaterials, 2020, 10(9), 1633.
45 Zhao T, Zhai P, Yang Z, et al. Nanoscale, 2018, 10, 22954.
46 Deng Z, Zhang Z, Lai Y, et al. Journal of the Electrochemical Society, 2013, 160(4), A553.
47 Waluś S, Barchasz C, Bouchet R, et al. Electrochimica Acta, 2020, 359, 136944.
48 Balach J, Linnemann J, Jaumann T, et al. Journal of Materials Chemistry A, 2018, 6(46), 23127.
[1] 王小玉. 四氧化三钴纳米材料制备路线的研究进展[J]. 材料导报, 2021, 35(z2): 64-67.
[2] 徐冉, 李智慧, 吴一楠, 李风亭. 金属有机骨架材料固定化酶的研究进展[J]. 材料导报, 2021, 35(z2): 285-293.
[3] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[4] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[5] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[6] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[7] 魏安柯, 王磊, 王祎. 金属-有机骨架(MOFs)用于锂硫电池硫正极材料改性的研究进展[J]. 材料导报, 2021, 35(13): 13052-13057, 13066.
[8] 刘树和, 刘彬, 赵焱, 张兰, 于晓华, 李如燕, 姚耀春, 董鹏. 香蒲活性炭用于锂硫电池正极材料[J]. 材料导报, 2020, 34(8): 8014-8019.
[9] 郭锦, 李占龙, 连晋毅, 闫晓燕, 张敏刚. 改性乙炔黑对锂硫电池电化学性能的影响[J]. 材料导报, 2020, 34(8): 8020-8024.
[10] 李锐, 孙晓刚, 黄雅盼, 魏成成, 梁国东, 邹婧怡, 徐宇浩, 何强. 三维多孔碳纳米片PC/CNT夹层高性能锂硫电池[J]. 材料导报, 2020, 34(16): 16006-16010.
[11] 徐卫卫, 董梦悦, 赵静, 张鸣清, 底兰波, 张秀玲. Zr基MOFs在大气压等离子体中稳定性的研究[J]. 材料导报, 2020, 34(16): 16104-16108.
[12] 徐群娜, 仇瑞杰, 马建中. 聚合物基MOFs复合材料的制备及应用[J]. 材料导报, 2020, 34(15): 15153-15162.
[13] 初红涛, 姚冬, 陈嘉琪, 于淼. 金属有机骨架材料作为荧光探针的研究进展[J]. 材料导报, 2020, 34(13): 13114-13120.
[14] 郝博, 唐一桐, 李雪霏, 赵文波. 金属有机框架衍生物的制备及催化性能的研究进展[J]. 材料导报, 2020, 34(11): 11035-11042.
[15] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed