Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13114-13120    https://doi.org/10.11896/cldb.19060114
  金属与金属基复合材料 |
金属有机骨架材料作为荧光探针的研究进展
初红涛, 姚冬, 陈嘉琪, 于淼
齐齐哈尔大学化学与化学工程学院,齐齐哈尔 161006
Research Progress of Metal-Organic Framework Materials as Fluorescent Probes
CHU Hongtao, YAO Dong, CHEN Jiaqi, YU Miao
College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
下载:  全 文 ( PDF ) ( 4667KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属有机骨架材料(MOFs)是利用金属离子或金属离子簇形成的次级结构单元与含氮、羧酸类官能团的有机配体通过自组装形成的具有晶体结构的多孔材料,与传统多孔材料相比,其拥有极高的比表面积和孔隙率,且孔道结构可调。金属有机骨架材料荧光探针的发光机理包括:基于中心金属离子发光、基于有机配体发光、基于配体到金属的电荷转移(LMCT)或金属到配体的电荷转移(MLCT)发光、基于封装具有优异发光性能的客体分子发光。通过检测目标物使金属有机骨架材料荧光光谱发生变化,从而实现对目标物的检测,金属有机骨架材料荧光探针已经在众多领域得到了广泛的应用。
金属有机骨架材料荧光探针主要包括传统金属有机骨架材料荧光探针、通过后合成修饰改性的金属有机骨架材料荧光探针以及通过封装客体改性的复合金属有机骨架材料荧光探针。过去学者们热衷于制备传统金属有机骨架材料荧光探针,近来为了丰富其可检测目标物的种类,开始研究将传统金属有机骨架材料荧光探针孔道结构可调的优点与荧光性能优越的客体材料相结合,开发复合金属有机骨架材料荧光探针,或将传统金属有机骨架材料荧光探针进行后合成改性。
本文通过介绍近年来金属有机骨架材料荧光探针对爆炸物、阴阳离子、生物小分子、温度、pH以及溶剂中的水等待测物检测识别中的应用,分析目标物使荧光光谱发生变化的机理,总结金属有机骨架材料荧光探针的设计理念,为金属有机骨架材料荧光探针的设计开发提供了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
初红涛
姚冬
陈嘉琪
于淼
关键词:  金属有机骨架材料  复合金属有机骨架材料  荧光探针  荧光传感    
Abstract: Metal-organic framework materials (MOFs) are porous materials with a crystal structure formed by self-assembly of secondary or structural units of metal ions or metal ions, and organic ligands containing nitrogen and carboxylic acid functional groups, and metal organic framework materials. They have a very high specific surface area and a very high porosity, and their pore structure is adjustable compared to conventional porous materials. The luminescence mechanism of metal-organic framework materials includes: based on central metal ion luminescence, based on organic ligand luminescence, ligand-to-metal charge transfer (LMCT) or metal-to-ligand charge transfer (MLCT) luminescence, based on package which has guest molecule with excellent luminescence performance emits light. The detection of the analyte by changing the fluorescence spectrum of the metal organic framework material by the analyte, the metal organic framework material fluorescent probe has been widely used in many fields.
Fluorescent probes for metal-organic framework materials mainly include fluorescent probes of classical metal-organic framework materials, fluo-rescent probes of metal-organic framework materials modified by post-synthesis modification, and fluorescent probes of composite metal-organic framework materials modified by encapsulation of guest. In the past, researchers have been mainly concentrated on the preparation of fluorescent probes for classical metal-organic framework materials. Recently, in order to enrich the types of detectable targets, they have begun to study the advantages of adjusting the pore structure of classical metal-organic framework fluorescent probes and superior fluorescence performance. The guest materials are combined to develop a composite metal organic framework material fluorescent probe or a classical metal organic framework material fluorescent probe for post-synthesis modification, thereby enhancing the fluorescence performance and specific sensing performance of the classical metal organic framework material fluorescent probe.
In this paper, the application of fluorescent probes of metal-organic framework materials in the detection and identification of explosives, anions and cations, bio-small molecules, temperature, pH and water waiting for analytes in recent years is introduced. The design concept of fluorescent probes for metal organic framework materials is summarized, which provides a new idea for the design and development of fluorescent probes for metal organic framework materials.
Key words:  metal-organic framework material    composite metal-organic framework material    fluorescent probe    fluorescence sensing
                    发布日期:  2020-06-24
ZTFLH:  O657  
基金资助: 黑龙江省自然科学基金(B2015017);黑龙江省教育厅项目(135109201)
通讯作者:  lange1979@163.com   
作者简介:  初红涛,男,工学博士,硕士研究生导师,齐齐哈尔大学副教授。分别于2002年7月和2005年3月于齐齐哈尔大学取得学士和硕士学位,2014年11月在哈尔滨工业大学化学工程与技术专业取得工学博士学位。主要研究方向为新型荧光探针的设计及应用。近年来发表学术论文20余篇。
引用本文:    
初红涛, 姚冬, 陈嘉琪, 于淼. 金属有机骨架材料作为荧光探针的研究进展[J]. 材料导报, 2020, 34(13): 13114-13120.
CHU Hongtao, YAO Dong, CHEN Jiaqi, YU Miao. Research Progress of Metal-Organic Framework Materials as Fluorescent Probes. Materials Reports, 2020, 34(13): 13114-13120.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060114  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13114
1 White K A, Chengelis D A, Gogick K A, et al. Journal of the American Chemical Society, 2009, 131(50), 18069.
2 Mendiratta S, Lee C H, Usman M, et al. Science and Technology of Advanced Materials, 2015, 16(5), 054204.
3 Sun C Y, Qin C, Wang X L, et al. Expert Opinion on Drug Delivery, 2012, 10(1), 89.
4 Wang H S. Coordination Chemistry Reviews, 2017, 349, 139.
5 Tang B, Xing Y, Li P, et al. Journal of the American Chemical Society, 2007, 129(38), 11666.
6 Keenan L. Chemical Society Reviews, 2014, 38(5),1315.
7 Akhgari F, Fattahi H, Oskoei Y M. Sensors and Actuators B: Chemical, 2015, 221, 867.
8 Wan Y, Cui Y, Yang Y, et al. Microporous and Mesoporous Materials, 2018, 268, 202.
9 Hao J, Liu F, Liu N, et al. Sensors and Actuators B: Chemical, 2017, 245, 641.
10 Banerjee D, Hu Zhichao, Li Jing. Dalton Transactions, 2014, 43(28), 10668.
11 Hu Z, Deibert B J, Li J. Chemical Society Reviews, 2014, 43(16), 5815.
12 Wang X S, Li L, Yuan D Q. Journal of Hazardous Materials, 2018, 344, 283.
13 Nagarkar S S, Desai A V, Ghosh S K. Chemical Communications, 2014, 50(64), 8915.
14 Pramanik S, Zheng C, Zhang X, et al. Journal of the American Chemical Society, 2011, 133(12), 4153.
15 Ma Y J, Xu G, Wei F, et al. New Journal of Chemistry, 2018, 42(7), 5162.
16 Wu W, Wu P, Yang F, et al. Science of The Total Environment, 2018, 630, 53.
17 Wang Y, Wang X, Zhang K, et al. Dalton Transactions, 2019,48, 2569.
18 Lin X, Gao G, Zheng L, et al. Analytical Chemistry, 2014, 86(2), 1223.
19 Ma Y J, Xu G H, Wei F D, et al. Journal of Materials Chemistry C, 2017, 5(33), 8566.
20 Yan B, Xu X Y. Journal of Materials Chemistry C, 2016, 4(7), 1543.
21 Singh G, Kumari B, Sinam G, et al. Environmental Pollution, 2018, 239, 95.
22 Barbier O, Arreola-Mendoza L, Luz María Del Razo. Chemico-Biological Interactions, 2010, 188(2), 319.
23 Ebrahim F M, Nguyen T N, Shyshkanov S, et al. Journal of the American Chemical Society, 2019,141(7), 3052.
24 Cheng G, Fan J, Sun W, et al. Chemical Communications, 2013, 50(8), 1018.
25 Ma Y J, Xu G H, Wei F D, et al. ACS Applied Materials & Interfaces, 2018,10(24), 20801.
26 Warwick C, Guerreiro A, Soares A. Biosensors & Bioelectronics, 2013, 41, 1.
27 Abdulazeez T, Adeloju S B. Talanta, 2013, 114, 191.
28 Zhao D, Wan X, Song H, et al. Sensors and Actuators B: Chemical, 2014, 197, 50.
29 Guo X Y, Zhao F, Liu J J, et al. Journal of Materials Chemistry A, 2015, 5(37), 20035.
30 Tong W Q, Liu W N, Cheng J G, et al. Dalton Transactions, 2018, 47(28), 9466.
31 Yang W, Xia J, Zhou G, et al. RSC Advances, 2018, 8(32), 17854.
32 Du Y, Li X, Lv X, et al. ACS Applied Materials & Interfaces, 2017, 9(36), 30925.
33 Xu Yan. Journal of the American Medical Association, 1998, 280(8), 719.
34 Zhang S Y, Shi W, Cheng P, et al. Journal of the American Chemical Society, 2015, 137(38), 12203.
35 Boscari C N, Mazzuia G R, Wisniewski Célio, et al. Electrophoresis, 2017, 38(7), 1083.
36 Du Y, Li X, Zheng H, et al. Analytica Chimica Acta, 2018, 1001, 134.
37 Tongo I, Ezemonye L, Akpeh K. Environmental Monitoring & Assessment, 2017, 189(6), 247.
38 He R, Wang Y L, Ma H F, et al. Dyes and Pigments, 2018, 151, 342.
39 Fernández-Ramos A A, Marchetti-Laurent C, Poindessous V, et al. Oncotarget, 2017, 8(26), 43048.
40 Jin M, Mou Z L, Zhang R L, et al. Biosensors and Bioelectronics, 2017, 91, 162.
41 Ajayakumar M R, Mukhopadhyay P. Chemical Communications, 2009, 25, 3702.
42 Mostakim S K, Biswas S. Crystengcomm, 2016, 18(17), 3104.
43 Martinez J L. Environmental Pollution, 2009, 157(11), 2893.
44 Zhu X D, Zhang K, Wang Y, et al. Inorganic Chemistry, 2018, 57(3), 1060.
45 Jiang H L, Feng D, Wang K, et al. Journal of the American Chemical Society, 2013, 135(37), 13934.
46 Rao X, Song T, Gao J, et al. Journal of the American Chemical Society, 2013, 135(41), 15559.
47 Lee W E, Jin Y J, Park L S, et al. Advanced Materials, 2012, 24(41), 5604.
48 Ooyama Y, Uenaka K, Matsugasako A, et al. RSC Advances, 2013, 3(45), 23255.
49 Kreno L E, Leong K, Farha O K, et al. Chemical Reviews, 2012, 112(2), 1105.
50 Douvali A, Tsipis A C, Eliseeva S V, et al. Angewandte Chemie International Edition, 2015, 54(5), 1651.
[1] 张晓琳, 丰晓婷, 詹世平, 卢春兰, 李鸣明, 侯维敏. 基于双硫键的荧光传感器在生物检测及靶向治疗药物输送系统中的应用[J]. 材料导报, 2020, 34(5): 5142-5147.
[2] 傅寅旭, 许雨熙, 诸葛黔, 王磊, 宋煦, 王旭. 金属有机骨架材料在生物样品前处理中的应用进展[J]. 材料导报, 2019, 33(z1): 408-411.
[3] 杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
[4] 董鸿,孙晓君,张欣,杨豆豆,王雪亮,张凤鸣. 纳米金属有机骨架ZIF-90的制备及载药性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 189-192.
[5] 周玲玲, 汤立红, 宁平, 李凯, 包双友, 朱婷婷, 金旭, 张秀英. 金属有机骨架材料在气体吸附与分离中的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 112-121.
[6] 王丽苹. 金属有机骨架材料在光催化反应中的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 51-62.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed