Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3737-3742    https://doi.org/10.11896/j.issn.1005-023X.2018.21.009
  无机非金属及其复合材料 |
硫化铜量子点的研究进展
杨历, 刘远洲, 李子院, 覃爱苗
桂林理工大学材料科学与工程学院,有色金属及材料加工新技术教育部重点实验室,桂林 541004
Progress of Copper Sulfide Quantum Dots
YANG Li, LIU Yuanzhou, LI Ziyuan, QIN Aimiao
College of Materials Science and Engineering, Guilin University of Technology, Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Guilin 541004
下载:  全 文 ( PDF ) ( 1973KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硫化铜量子点作为一种p型半导体纳米晶,具有很强的表面等离子体共振效应、低的毒性以及独特的光学和电学性能,在光催化、生物技术、光电转换材料领域受到了极大关注。由于单分散的硫化铜量子点的制备过程复杂,效率较低,并且纯的硫化铜量子点电导率较低,这极大地限制了其在能量存储器件方面的应用。此外,由于硫化铜量子点复杂的能带结构和独特的p型半导体特性,针对硫化铜量子点的光学性能调控尚不成熟。基于此,本文综述了硫化铜量子点在制备方面的研究现状与取得的进展,介绍了硫化铜量子点的能带结构、晶体结构,及其在量子点敏化太阳能电池、光催化降解污染物、肿瘤细胞诊断与治疗等方面的研究进展,并对硫化铜量子点或Cu系量子点更进一步的研究、开发应用提出了几点建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨历
刘远洲
李子院
覃爱苗
关键词:  硫化铜量子点  晶体结构  量子点敏化太阳能电池  光催化  荧光探针    
Abstract: As a p-type semiconductor nanocrystal, copper sulfide quantum dots have attracted much attention in the field of photocatalysis, biotechnology and photovoltaic materials for their strong localized surface plasmon resonance (LSPR) effect, low to-xicity and unique optical and electrical properties. The complicated processes and low efficiency for preparation of monodisperse copper sulfide quantum dots, and the low conductivity of pure copper sulfide quantum dots greatly limit their applications in energy sto-rage devices. In addition, because of their complex band structure and unique p-type semiconductor properties, to controll the optical properties of copper sulfide quantum dots is still a challenge. In this paper, the research status and progress about the preparation of copper sulfide quantum dots are reviewed, the band and crystal structure of copper sulfide quantum dots and their application in the field of quantum dot sensitized solar cells, photocatalytic degradation pollutants, diagnosis and treatment tumor cells, and etc are introduced. And some suggestions about the further research and applications of the copper sulfide quantum dots or Cu department quantum dots are put forward.
Key words:  copper sulfide quantum dots    crystal structure    quantum dot sensitized solar cells    photocatalytic    fluorescent probe
               出版日期:  2018-11-10      发布日期:  2018-11-21
ZTFLH:  TB34  
  TB303  
基金资助: 国家自然科学基金(51564009; 51468011; 21063005); 广西自然科学基金(2015GXNSFDA139035)
作者简介:  杨历:男,1992年生,硕士研究生,研究方向为纳米功能材料 E-mail:452412391@qq.com;覃爱苗:通信作者,女,1974年生,博士,教授,研究方向为纳米功能材料 E-mail:2005032@glut.edu.cn 李子院:男,1979年生,高级实验师,研究方向为生物技术 E-mail:ziyuanli@glut.edu.cn
引用本文:    
杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
YANG Li, LIU Yuanzhou, LI Ziyuan, QIN Aimiao. Progress of Copper Sulfide Quantum Dots. Materials Reports, 2018, 32(21): 3737-3742.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.009  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3737
1 Han Y, Wang Y, Gao W, et al.Synthesis of novel CuS with hierarchical structures and its application in lithium-ion batteries[J].Powder Technology,2011,212(1):64.
2 Chaudhary G R, Bansal P, Mehta S K.Recyclable CuS quantum dots as heterogeneous catalyst for Biginelli reaction under solvent free conditions[J].Chemical Engineering Journal,2014,243(4):217.
3 Bansal P, Chaudhary G R, Kaur N, et al.An efficient and green synthesis of xanthene derivatives using CuS quantum dots as a hete-rogeneous and reusable catalyst under solvent free conditions[J].RSC Advances,2015,5(11):8205.
4 Wang S, Huang Y.Simulating biomineralization method for the synthesis of MS (M=Cd, Zn, and Cu)/polyurethane nanocomposite[J].Optoelectronics and Advanced Materials-Rapid Communications,2014,8(7-8):770.
5 Liang W T, Zhu L Q, Liu H C, et al.CuS/brass based counter electrode in quantum dot-sensitized solar cells (QDSCs) with considerable efficiency and good stability[J].Electrochimica Acta,2015,184:285.
6 Hou F, Huang L, Xi P, et al.A retrievable and highly selective fluorescent probe for monitoring sulfide and imaging in living cells[J].Inorganic Chemistry,2012,51(4):2454.
7 Liu L G, Zhong H Z, Bai Z L, et al.Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: Phase- and composition-dependent plasmonic properties[J].Chemistry of Materials,2013,25(23):4828.
8 Mary K A, Unnikrishnan N, Philip R.Defects related emission and nanosecond optical power limiting in CuS quantum dots[J].Physica E: Low-dimensional Systems and Nanostructures,2015,74:151.
9 Mukherjee N, Sinha A, Khan G G, et al.A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique[J].Materials Research Bulletin,2011,46(1):6.
10 Qi H, Huang J, Cao L, et al.Controlled synthesis and optical pro-perties of doughnut-aggregated hollow sphere-like CuS[J].Ceramics International,2012,38(8):6659.
11 Liu Y, Cao J, Wang Y, et al.Aqueous ammonia route to Cu1.8S with triangular and rod-like shapes[J].Inorganic Chemistry Communications,2002,5(6):407.
12 Li B, Xie Y, Xue Y.Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance[J].Journal of Physical Chemistry C,2007,111(33):12181.
13 Zhang Y, Tian J, Li H, et al.Biomolecule-assisted, environmentally friendly, one-pot synthesis of CuS/reduced graphene oxide nanocomposites with enhanced photocatalytic performance[J].Langmuir,2012,28(35):12893.
14 Soylu A.The influence of external fields on the energy of two inte-racting electrons in a quantum dot[J].Annals of Physics,2012,327(12):3048.
15 Heiba Z K, Mohamed M B.Changes in structural, optical and magnetic properties of nano-CuS upon doping with Mn and Fe: A comparative study[J].Applied Physics A,2018,124(6):446.
16 Yumashev K V, Prokoshin P V, Malyarevich A M, et al.Optical transient bleaching and induced absorption of surface-modified copper sulfide nanocrystals[J].Applied Physics B-Lasers and Optics,1997,64(1):73.
17 Fu W P, Liu L G, Yang G L, et al.Oleylamine-assisted phase-selective synthesis of Cu2-xS nanocrystals and the mechanism of phase control[J].Particle & Particle Systems Characterization,2015,32(9):907.
18 Morimoto N, Koto K, Shimazaki Y.Anilite, Cu7S4, a new mineral[J].American Mineralogist,1969,54(9):1256.
19 Jiang X C, Xie Y, Lu J, et al.Preparation and phase transformation of nanocrystalline copper sulfides (Cu9S8, Cu7S4 and CuS) at low temperature[J].Journal of Materials Chemistry,2000,10(9):2193.
20 Yu X, Cao C, Zhu H, et al.Nanometer-sized copper sulfide hollow spheres with strong optical-limiting properties[J].Advanced Functional Materials,2007,17(8):1397.
21 Roy P, Srivastava S K.Nanostructured copper sulfides: Synthesis, properties and applications[J].Crystengcomm,2015,17(41):7801.
22 Zhao Y, Pan H, Lou Y, et al.Plasmonic Cu2-xS nanocrystals: Optical and structural properties of copper-deficient copper(Ⅰ) sulfides[J].Journal of the American Chemical Society,2009,131(12):4253.
23 Li X, Hu C, Kang X, et al.Introducing kalium into copper sulfide for the enhancement of thermoelectric properties[J].Journal of Materials Chemistry A,2013,1(44):13721.
24 Luther J M, Jain P K, Ewers T, et al.Localized surface plasmon resonances arising from free carriers in doped quantum dots[J].Nature Materials,2011,10(5):361.
25 Fujii M, Nagasuna K, Fujishima M, et al.Photodeposition of CdS quantum dots on TiO2: Preparation, characterization, and reaction mechanism[J].Journal of Physical Chemistry C,2009,113(38):16711.
26 Azpiroz J M, Ronca E, De Angelis F.Photoinduced energy shift in quantum-dot-sensitized TiO2: A first-principles analysis[J].Journal of Physical Chemistry Letters,2015,6(8):1423.
27 Lin M C, Lee M W.Cu2-xS quantum dot-sensitized solar cells[J].Electrochemistry Communications,2011,13(12):1376.
28 Lee S Y, Park M A, Kim J H, et al.Enhanced electrocatalytic acti-vity of the annealed Cu2-xS counter electrode for quantum dot-sensitized solar cells[J].Journal of the Electrochemical Society,2013,160(11):H847.
29 Buatong N, Tang I M, Pon-On W.Quantum dot-sensitized solar cells having 3D-TiO2 flower-like structures on the surface of titania nanorods with CuS counter electrode[J].Nanoscale Research Letters,2015,10(1):146.
30 Yang Z, Chen C Y, Liu C W, et al.Quantum dot-sensitized solar cells featuring CuS/CoS electrodes provide 4.1% efficiency[J].Advanced Energy Materials,2011,1(2):259.
31 Kalanur S S, Chae S Y, Joo O S.Transparent Cu1.8S and CuS thin films on FTO as efficient counter electrode for quantum dot solar cells[J].Electrochimica Acta,2013,103(8):91.
32 Savariraj A D, Viswanathan K K, Prabakar K.Influence of Cu vacancy on knit coir mat structured CuS as counter electrode for quantum dot sensitized solar cells[J].ACS Applied Materials & Interfaces,2014,6(22):19702.
33 Khalili S S, Dehghani H.Ca-doped CuS/graphene sheet nanocomposite as a highly catalytic counter electrode for improving quantum dot-sensitized solar cell performance[J].RSC Advances,2016,6(13):10880.
34 Gopi C V V M, Venkata-Haritha M, Kim S K, et al. Highly efficient and stable quantum dot-sensitized solar cells based on a Mn-doped CuS counter electrode[J].RSC Advances,2015,5(4):2963.
35 Li F, Wu J, Qin Q, et al.Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures[J].Powder Technology,2010,198(2):267.
36 Pal M, Mathews N R, Sanchez-Mora E, et al.Synthesis of CuS na-noparticles by a wet chemical route and their photocatalytic activity[J].Journal of Nanoparticle Research,2015,17(7):301.
37 Zhang J, Yu J, Zhang Y, et al.Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer[J].Nano letters,2011,11(11):4774.
38 Ratanatawanate C, Bui A, Vu K, et al.Low-temperature synthesis of copper(Ⅱ) sulfide quantum dot decorated TiO2 nanotubes and their photocatalytic properties[J].Journal of Physical Chemistry C,2011,115(14):6175.
39 Hou G, Cheng Z, Kang L, et al.Controllable synthesis of CuS decorated TiO2 nanofibers for enhanced photocatalysis[J].Crystengcomm,2015,17(29):5496.
40 Liu H Q, Tang W, Li C, et al.CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats[J].Nanoscale Research Letters,2015,10(1):265.
41 Pan J, Liu Y, Feng S S.Multifunctional nanoparticles of biodegradable copolymer blend for cancer diagnosis and treatment[J].Nanomedicine,2010,5(3):347.
42 Wang H Y, Hua X W, Wu F G, et al.Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: Potential anticancer and antibacterial applications[J].ACS Applied Materials & Interfaces,2015,7(13):7082.
43 Shuang W, Wang X, Wang G, et al.Facile and controlled synthesis of stable water-soluble cupric sulfide quantum dots for significantly inhibiting the proliferation of cancer cells[J].Journal of Materials Chemistry B,2015,3(27):5603.
44 Song G, Han L, Zou W, et al.A novel photothermal nanocrystals of Cu7S4 hollow structure for efficient ablation of cancer cells[J].Nano-Micro Letters,2014,6(2):169.
45 Xie Y, Bertoni G, Riedinger A, et al.Nanoscale transformations in covellite (CuS) nanocrystals in the presence of divalent metal cations in a mild reducing environment[J].Chemistry of Materials,2015,27(21):7531.
46 Huang S, Liu J, He Q, et al.Smart Cu1.75S nanocapsules with high and stable photothermal efficiency for NIR photo-triggered drug release[J].Nano Research,2015,8(12):4038.
47 Wang S, Riedinger A, Li H, et al.Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects[J].ACS Nano,2015,9(2):1788.
48 Li Y, Lu W, Huang Q, et al.Copper sulfide nanoparticles for photothermal ablation of tumor cells[J].Nanomedicine,2010,5(8):1161.
49 Qin A M, Fang Y P, Ou H D, et al.Formation of various morpho-logies of covellite copper sulfide submicron crystals by a hydrothermal method without surfactant[J].Crystal Growth & Design,2005,5(3):855.
50 Du W L, Liao L, Yang L, et al.Aqueous synthesis of functionalized copper sulfide quantum dots as near-infrared luminescent probes for detection of Hg2+, Ag+ and Au3+[J].Scientific Report,2017,7(1):11451.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[4] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[5] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[6] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[7] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[8] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[9] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[10] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[11] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[12] 黄宁岸, 赵梓俨, 邹彦昭, 周莹. 表面处理对Pt/Al2O3光催化氧化NO的影响[J]. 材料导报, 2019, 33(12): 1921-1925.
[13] 安伟佳, 田玲玉, 芮玉兰, 高雅萌, 崔文权. Ag@AgCl/Bi2WO6复合光催化剂的制备及可见光催化性能[J]. 材料导报, 2019, 33(12): 1932-1938.
[14] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[15] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed