Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 947-953    https://doi.org/10.11896/cldb.201906007
  无机非金属及其复合材料 |
以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能
占昌朝1,2, 曹小华1,2, 金文雄1, 叶志刚1,2, 谢宝华1,2, 徐建兴1, 周荣辉1
1 九江学院化学与环境工程学院,九江 332005
2 江西省生态化工工程技术研究中心,九江 332005
Fabrication and Photocatalytic Performance of Neodymium-doped Molecularly Imprinted Titanium Dioxide with Salicylic Acid as Template Molecule
ZHAN Changchao1,2, CAO Xiaohua1,2, JIN Wenxiong1, YE Zhigang1,2, XIE Baohua1,2, XU Jianxing1, ZHOU Ronghui1
1 College of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 332005
2 Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang 332005
下载:  全 文 ( PDF ) ( 2894KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以水杨酸(SA)为模板分子,钛酸四丁酯为钛源,硝酸钕为掺杂剂,采用溶胶-凝胶法,在不同焙烧温度和不同Nd掺杂量下制备了一系列Nd掺杂分子印迹TiO2(NMT)光催化剂。采用XRD、SEM、TEM、ICP-AES、EDS、XPS、FT-IR、N2吸附-脱附(BET模型)、紫外-可见漫反射光谱(UV-Vis DRS)等手段对产物进行了表征,并以光催化降解SA为指针反应,考察了Nd掺杂量、焙烧温度、SA溶液初始pH值对产物光催化活性的影响。结果表明,NMT 为单一锐钛矿相,孔道结构的形成是晶粒堆积孔和模板剂脱除所致。相比非印迹TiO2和未掺杂的分子印迹TiO2,NMT对模板分子降解反应的光催化活性大大提高,且当n(Nd)∶n(TiO2)= 0.30%、550 ℃热处理2 h时光催化活性最佳:紫外光下其作为光催化剂可以得到86.4%的降解率(SA模拟废水初始浓度为20 mg/L、初始pH=4,降解反应时间为70 min),重复使用四次降解率仍保持在83.02 %;可见光(λ>400 nm)下可以得到97.96%的降解率(SA模拟废水初始浓度为20 mg/L、初始pH=4,降解反应时间为30 h)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
占昌朝
曹小华
金文雄
叶志刚
谢宝华
徐建兴
周荣辉
关键词:  分子印迹  钕(III)  二氧化钛  水杨酸  模板分子  光催化  溶胶-凝胶法  紫外光  可见光    
Abstract: This contribution presents the fabrication, characterization and photocatalytic performance evaluation of neodymium-doped molecularly imprinted titanium dioxide (NMT) which is expected to serve as photocatalysts for organic compounds degradation in aqueous solution. We prepared a series of NMT samples via a sol-gel process, which differed in calcination temperature and Nd doping amount, by using salicylic acid (SA) as template, tetrabutyl titanate as titanium source and neodymium nitrate as dopant. The characterization of the resultant samples was carried out by means of XRD, SEM, TEM, ICP-AES, EDS, XPS, FT-IR, N2 adsorption-desorption (BET model) and UV-Vis DRS. Moreover, we investigated the photocatalytic activities of the products toward the template molecules (SA), under both UV and visible light irradiations, and with various calcination temperatures, various Nd doping amounts, and various initial pH values of SA solution. The experimental results confirmed the single anatase phase composition of NMT, and a highly porous structure induced by accumulation of grain clusters and template removal. All the NMT samples displayed the photocatalytic activities much higher than those of undoped molecularly imprinted TiO2 and ordinary (non-imprinted) TiO2 for the degradation reaction of the template molecule (SA). The NMT sample with molar ratio of Nd/TiO2 of 0.30% and calcination tempe-rature of 550 ℃ exhibited the highest photocatalytic activity, as it could achieve a 86.4% (within 70 min) degradation rate and a 97.96% (within 30 h) degradation rate for SA aqueous solution (initial concentration 20 mg/L, initial pH=4), under UV and visible irradiations, respectively. In addition, the degradation rate could remain above 83.02% within 4 times of reuse under UV irradiation.
Key words:  molecular imprinting    neodymium(III)    titanium dioxide    salicylic acid    template molecule    photocatalysis    sol-gel method    ultraviolet light    visible light
               出版日期:  2019-03-25      发布日期:  2019-04-03
ZTFLH:  O649.4  
基金资助: 国家自然科学基金(51562016,21864015);江西省自然科学基金(20171BAB206015);九江学院科技基金(2016KJ005)
作者简介:  占昌朝,九江学院教授,硕士研究生导师
引用本文:    
占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
ZHAN Changchao, CAO Xiaohua, JIN Wenxiong, YE Zhigang, XIE Baohua, XU Jianxing, ZHOU Ronghui. Fabrication and Photocatalytic Performance of Neodymium-doped Molecularly Imprinted Titanium Dioxide with Salicylic Acid as Template Molecule. Materials Reports, 2019, 33(6): 947-953.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906007  或          http://www.mater-rep.com/CN/Y2019/V33/I6/947
1 Arfanis M K, Adamou P, Moustakas N G, et al. Chemical Engineering Journal, 2017,310,525.
2 Wang Z Q, Liu X, Li W Q, et al. Ceramics International,2014,40(6),8863.
3 Zhan C C, Chen F, Yang J T, et al. Journal of Hazardous Materials,2014,267,88.
4 Lin X Q, Sun M X, Hu M Y, et al. Materials Review B:Research Papers,2016,30(9),16(in Chinese).
林小靖,孙明轩,胡梦媛,等.材料导报:研究篇,2016,30(9),16.
5 Hewer T L R, Souza E C C, Martins T S, et al. Journal of Molecular Catalysis A: Chemical,2011,336(1),58.
6 Ma R, Wang X, Huang J, et al. Vacuum,2017,141,157.
7 Huang F P, Zhang S, Wang S, et al. Bulletin of the Chinese Ceramic Society,2014, 33(7),1643(in Chinese).
黄凤萍,张双,王帅,等.硅酸盐通报,2014,33(7),1643.
8 Hou M F, Li F B, Li R F, et al. Journal of the Chinese Rare Earth Society,2004, 22(1),75(in Chinese).
侯梅芳,李芳柏,李瑞丰,等.中国稀土学报,2004,22(1),75.
9 Chen L X, Wang X Y, Lu W H, et al. Chemical Society Reviews, 2016,45(8),2137.
10 Sharabi D, Paz Y. Applied Catalysis B: Environmental,2010,95(1),169.
11 Wei S P, An Y, Qin H L. Journal of South China Agricultural University,2016,37(4),134(in Chinese).
魏声培,安娅,秦好丽.华南农业大学学报,2016,37(4),134.
12 Wang H, Wang X M, Sun W,et al. Chinese Journal of Inorganic Chemistry,2006,22(3),464(in Chinese).
汪浩,王小毛,孙巍,等.无机化学学报,2006,22(3),464.
13 Li H R, Feng B. Materials Science in Semiconductor Processing,2016,43,55.
14 Pawlak D A, Ito M, Oku M, et al. Journal of Physical Chemistry B,2002,106(2),504.
15 Fang J, Bi X Z, Si D J, et al. Applied Surface Science,2007,253(22),8952.
16 Yuvakkumar R, Hong S I. Journal of Sol-Gel Science and Technology, 2015,73(2),511.
17 Sagara B, Zhang Y, Zhang C Y, et al. Journal of Inner Mongolia Normal University (Natural Science Edition), 2012,41(1),69(in Chinese).
萨嘎拉,张宇,张春燕,等.内蒙古师范大学学报:自然科学版,2012,41(1),69.
18 Zhu R, Chen H R, Shi J L, et al. Journal of Inorganic Materials,2003,18(4),855(in Chinese).
诸荣,陈航榕,施剑林,等.无机材料学报, 2003,18(4),855.
19 Tang S Q, He J P, Zhang Z. Journal of the Chinese Ceramic Society,2012,40(7),950(in Chinese).
唐守强,何菁萍,张昭.硅酸盐学报,2012,40(7),950.
20 Zeng F M, Zhang Y, Sun J, et al. Spectroscopy and Spectral Analysis, 2009,29(5),1323(in Chinese).
曾繁明,张莹,孙晶,等.光谱学与光谱分析,2009,29(5),1323.
21 Zhan C C, Zhong M Q, Chen F, et al. The Chinese Journal of Nonferrous Metals,2014,24(1),211(in Chinese).
占昌朝,钟明强,陈枫,等.中国有色金属学报, 2014,24 (1),211.
22 Fan G D, Wang L N, Guan Y Y, et al. Chemical Industry and Enginee-ring Progress,2016,35(3),820(in Chinese).
樊国栋,王丽娜,管园园,等.化工进展,2016,35(3),820.
23 Li Y B, Wang C P, Xu W J, et al. Environmental Engineering,2014, 32 (2),10(in Chinese).
李彦博,汪翠萍,徐武军,等.环境工程,2014,32(2),10.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[3] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[4] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[5] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[6] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[7] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[8] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[9] 范海波, 任启芳, 余淼, 王苏蕾, 曹镜宇, 金震, 丁益. 磷酸银/类石墨氮化碳-硅藻土复合材料的制备及可见光催化性能[J]. 材料导报, 2019, 33(20): 3383-3389.
[10] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[11] 周亚,李萍,左迎峰,袁光明,李贤军,吴义强. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989-2996.
[12] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[13] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[14] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[15] 黄宁岸, 赵梓俨, 邹彦昭, 周莹. 表面处理对Pt/Al2O3光催化氧化NO的影响[J]. 材料导报, 2019, 33(12): 1921-1925.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed