Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1558-1566    https://doi.org/10.11896/cldb.18010121
  金属与金属基复合材料 |
泡沫钛表面改性研究进展
肖健1, 刘锦平1, 刘先斌1, 邱贵宝2
1.江西理工大学材料科学与工程学院,赣州 341000;
2.重庆大学材料科学与工程学院,重庆 400044
A Review on Surface Modification of Titanium Foam
XIAO Jian1, LIU Jinping1, LIU Xianbin1, QIU Guibao2
1.School of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000;
2.College of Materials Science & Engineering, Chongqing University, Chongqing 400044
下载:  全 文 ( PDF ) ( 5639KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 泡沫钛是一种钛材质孔骨架组成的泡沫结构。这种新型泡沫金属材料兼具泡沫结构和钛的双重属性,具有轻质、高强、吸声、隔热、减振、阻尼、吸收冲击能、电磁屏蔽等多种优异性能。它不仅可用作结构材料也可作为功能材料,受到了人们的广泛关注。
然而,泡沫钛的表面钛氧化物极其稳定,限制了其应用的拓展。以泡沫钛作为前驱体,通过水热法、阳极氧化法、电沉积法等表面改性技术得到组成、形貌和结构可调的负载物,该负载物既能够保持泡沫钛基体多孔结构的特点,又能有效提高其表面活性和导电性,近年来已成为该领域的研究热点。同时,由于泡沫钛表面负载物单一的结构和组成,使其具备的性能(如电容性能、催化性能)有限,阻碍了泡沫钛相关应用的进一步发展。因此,除了研究制备各种不同泡沫钛表面负载物外,学者们还从泡沫钛表面负载物的组成和结构出发,制备多样化且在各方面应用中性能突出的负载材料。
负载型泡沫钛作为优异的应用型材料,其研究较为成熟的组成主要包括纳米TiO2、金属催化剂和导电聚合物等,结构主要包括管状、线状、花状、粒状和中空结构等。负载型泡沫钛不仅具有非常高的比表面积和内部贯通的孔隙结构,还结合了表面负载物高的导电性、催化性、亲水性和吸附性等特性,从而表现出更加优异的性能。其中,TiO2/泡沫钛材料具备纳米结构,能够提供优异的催化性能,且通常优于其他负载物。从组成结构出发,近几年研究者们通过调控改性方法或反应条件,制得多种不同组成结构的负载型泡沫钛材料。一方面,表面负载物的纳米结构可以起到缓冲基体泡沫钛材料在使用过程中所受到的冲击,有利于提高循环性能;另一方面,泡沫钛表面负载物的结构具有可调性,从而使其活性位点得到充分暴露,实现复合结构材料性能发挥的最大化效果。
在研究工作的基础上,本文综述了负载型泡沫钛的研究进展,包括改性方法、组成特点、结构调控及其在电化学储能和环境催化两大领域的应用,最后阐述了负载型泡沫钛领域当前面临的挑战以及未来的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖健
刘锦平
刘先斌
邱贵宝
关键词:  泡沫金属  钛合金  表面工程  电化学  光催化    
Abstract: Titanium foam is a kind of complex foam structure composed of hole and titanium hole skeleton. This novel metal foam material possesses the dual properties of foam structure and titanium, showing excellent properties such as light weight, high strength, sound absorption, heat insulation, vibration reduction, damping, absorbing shock energy and electromagnetic shielding. It has aroused numerous attention because it can be used not only as structural material but also as functional material.
However, titanium oxide on the surface of titanium foam is extremely stable, which blocks its extensive applications. Taking titanium foam as a precursor, the surface modification technologies including hydrothermal method, anodization method and electrodeposition method are employed to obtain the loadings with adjustable composition, morphology and structure. Surface modification can not only preserve the characteristics of porous structure of titanium foam matrix, but also effectively improve its surface activity and electrical conductivity, which has become a research focus of this field in recent years. Meanwhile, titanium foam can merely offer limited performance (such as capacitance and catalytic perfor-mance), due to the single structure and composition of its surface load, which hinders the further development of applications. Accordingly, in addition to the preparation of various types of surface loads on titanium foam, great efforts have also been made to prepare diverse loading materials with outstanding performance in various applications based on the composition and structure of titanium foam surface loads.
As an excellent application material, supported titanium foam primarily consists of nano TiO2, metal catalyst and conductive polymer, with diverse structure including tubular, linear, flower-like, granular and hollow structures. Supported titanium foam exhibits high specific surface area and internal pore structure, it is also endowed with the characteristics of high conductivity, catalysis, hydrophilicity and adsorption of surface loads, which contributes to better performance of the titanium foam. Among them, TiO2/titanium foam material bear nano structure and is capable of providing excellent capacity and catalytic performance, which is generally superior to other loads. Based on the structural composition, a variety of loaded titanium foam materials with different structural composition have been prepared in recent years by adjusting modification approaches or reaction conditions. On the one hand, some of the obtained loaded titanium foam with certain structure can relieve the impact of the the material in service, resulting in an improved cyclic performance. On the other hand, by regulating the structure of surface load of titanium foam, its activity can be fully exposed and its performance can be maximized.
Based on the previous research work, we reviews the progress of supported titanium foam, including modification methods, composition cha-racteristics, structural regulation and its application in electrochemical energy storage and environmental catalysis. In the end, we point out the current challenges and future development prospects in the field of supported titanium foam.
Key words:  metal foam    titanium alloy    surface engineering    electrochemistry    photocatalysis
                    发布日期:  2019-05-10
ZTFLH:  TG166.5  
基金资助: 国家自然科学基金(51761013;51674055);江西省教育厅基金项目(GJJ160655);江西理工大学博士启动基金项目(jxxjbs16019)
通讯作者:  xiaojian@jxust.edu.cn   
作者简介:  肖健,任教于江西理工大学材料科学与工程学院。2011年本科毕业于江西理工大学,2016年博士毕业于重庆大学。主要从事泡沫金属孔结构调控方面的研究,主持江西省教育厅青年基金,在泡沫钛领域发表论文10余篇(包括《中国材料进展》、《稀有金属材料与工程》、Mate-rials & Design等国内外知名期刊),建立了孔隙率定量预测的数学方程。
引用本文:    
肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
XIAO Jian, LIU Jinping, LIU Xianbin, QIU Guibao. A Review on Surface Modification of Titanium Foam. Materials Reports, 2019, 33(9): 1558-1566.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010121  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1558
1 Gibson L J, Ashby M F, Cellular solids: structure and properties, Cambridge University Press, UK,1999.
2 Ashby M F, Evans A G, et al. Metal foams: a design guide, Elsevier, Netherlands,2000.
3 Bram M, Stiller C, Buchkremer H P, et al. Advanced Engineering Materials,2000,2,196.
4 Tang H P, Wang J. Materials China,2014,33(9-10),576(in Chinese).
汤慧萍,王建.中国材料进展,2014,33(9-10),576.
5 Dunand D C. Advanced Engineering Materials,2004,6,369.
6 Xiao J, Qiu G B. Materials China,2017,37(5),354(in Chinese).
肖健,邱贵宝.中国材料进展,2017,37(5),354.
7 Xiao J, Qiu G B. Rare Matel Materials and Engineering,2017,46(6),1734(in Chinese).
肖健,邱贵宝.稀有金属材料与工程,2017,46(6),1734.
8 Xiao J, Cui H, Qiu G B, et al. Materials & design,2015,88,132.
9 Xiao J, Yang Y, Qiu GB, et al. Transactions of Nonferrous Metals Society of China,2015,25,3834.
10 Xiao J, Qiu G B, Liao Y L, et al. Rare Matel Materials and Engineering,2015,44(7),1724(in Chinese).
肖健,邱贵宝,廖益龙,等.稀有金属材料与工程,2015,44(7),1724.
11 Xiao J, Qiu G B, Liao Y L, et al. Rare Matel Materials and Engineering,2015,44(10),2583(in Chinese).
肖健,邱贵宝,廖益龙,等.稀有金属材料与工程,2015,44(10),2583.
12 Xiao J, Cui H, Qiu G B, Journal of Functional Materials,2015,46(22),22015(in Chinese).
肖健,崔豪,邱贵宝.功能材料,2015,46(22),22015.
13 Arifvianto B, Leeflang M A, Zhou J. Materials Characterization,2016,121,48.
14 Arifvianto B, Leeflang M A, Zhou J. Journal of the Mechanical Behavior of Biomedical Materials,2017,68,144.
15 Mutlu I. Surface & Coatings Technology,2013,232,396.
16 Liang J, Wen L, Cheng H M, et al. Journal of Electrochemistry,2015,21(6),505(in Chinese).
梁骥,闻雷,成会明,等.电化学,2015,21(6),505.
17 Hou M, Yi B L, Journal of Electrochemistry,2012,18(1),1(in Chinese).
侯明,衣宝廉.电化学,2012,18(1),1.
18 Shu C, Wang E, Jiang L, et al. Journal of Power Sources,2012,208,159.
19 Yang W Q, Yang S H, Sun G Q, et al. Chinese Journal of Power Sources,2005,29(3),182(in Chinese).
杨维谦,杨少华,孙公权,等.电源技术,2005,29(3),182.
20 Zhang Y X, Zhang X L, Zheng H H. Battery Bimonthly,2009,39(2),106(in Chinese).
张玉玺,张晓丽,郑洪河.电池,2009,39(2),106.
21 Wang Q W, Du X F, Chen X Z, et al. Acta Physico-Chimica Sinica,2015,31(8),1437(in Chinese).
汪倩雯,杜显锋,陈夕子,等.物理化学学报,2015,31(8),1437.
22 Bi Z, Paranthaman M P, Menchhofer P A, et al. Journal of Power Sources,2013,222,461.
23 Wang J, Fan H W, Zhang H, et al. Progress in Chemistry,2016,28(2),284(in Chinese).
王晶,范昊雯,张贺,等.化学进展,2016,28(2),284.
24 Choi H, Park H, Um J H, et al. Applied Surface Science,2017,411,363.
25 Jiao S, Zhang W K, Su F Y, et al. New Carbon Materials,2017,32(2),106(in Chinese).
焦琛,张卫珂,苏方远,等.新型炭材料,2017,32(2),106.
26 Wei J, Wei S, Wang G, et al. European Polymer Journal,2013,49,3651.
27 Cui G, Liu P S. Acta Chimica Sinica,2013,71(6),947(in Chinese).
崔光,刘培生.化学学报,2013,71(6),947.
28 Liu P S, Cui G, Yang C Y. Materials Letters,2015,155,87.
29 Cheng D, Zhao X, Qiu F, et al. Chemistry & Bioengineering,2011,28(4),1(in Chinese).
程迪,赵馨,邱峰,等.化学与生物工程,2011,28(4),1.
30 Cao G J, Cui B, Wang W Q, et al. Transactions of Nonferrous Metals Society of China,2014,24,2581.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[3] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[4] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[5] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[6] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[7] 施方长, 王玉, 高延敏. 改性含N小分子用于金属表面锈层处理对环氧涂层防腐性能的研究[J]. 材料导报, 2019, 33(z1): 523-526.
[8] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[9] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[10] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[11] 阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
[12] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[15] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed