Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1567-1574    https://doi.org/10.11896/cldb.18100030
  金属与金属基复合材料 |
岩土锚固吸能锚杆支护材料/结构及其力学性能研究进展
李景文1, 乔建刚1,付旭2, 刘晓立2
1.河北工业大学土木与交通学院,天津 300401;
2.北华航天工业学院建筑工程系,廊坊 065000
Research Progress on Material/Structure and Mechanical Properties of Energy-absorbing Bolt Used in Ground Anchorage
LI Jingwen1, QIAO Jiangang1, FU Xu2, LIU Xiaoli2
1.College of Civil and Transportation, Hebei University of Technology, Tianjin 300401;
2.Department of Architectural Engineering, North China Institute of Aerospace Engineering, Langfang 065000
下载:  全 文 ( PDF ) ( 1951KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 吸能锚杆自20世纪90年代问世以来,有效解决了岩土层的大变形和瞬时高动载荷问题,在深部软岩工程领域中发挥着重要作用。吸能锚杆的传统支护材料一般主要包括杆体、托板、螺母和锚固剂,其中杆体材料一般为圆钢和螺纹钢,在静载和动载条件下表现出了优良的材料性能;树脂锚固剂是最主要的锚固剂之一,分为慢、中、快和超快四种型号,澳大利亚与中国均成功研制了双速树脂锚固剂。
目前,已有几十种吸能锚杆被研制出来,例如锥形锚杆、D形锚杆、Garford 锚杆 、Yield-Lok锚杆、Roofex锚杆等,这些锚杆可分为杆体可延伸型和构件可滑移型两类。例如,锥形锚杆主要依靠杆体上的锥形体在锚固剂中的滑移来吸收和转移围岩膨胀变形能;D形锚杆主要依靠杆体上桨状或波纹状的锚固单元屈服变形来吸收和转移围岩膨胀变形能;Garford锚杆和Roofex锚杆均依靠拉力载荷迫使锚杆杆体从滑移元件(套筒状,要求内径小于锚杆直径)中被挤压出,从而吸收和转移围岩膨胀变形能。
对于上述吸能锚杆,其所受拉力载荷(工作阻力)随位移而变化,延伸率有限,当围岩膨胀变形能足够大时,锚杆支护系统易被冲击破坏,难以满足大变形控制要求。鉴于此,何满朝院士首次在岩土锚固领域中提出了负泊松比(NPR)材料/结构的概念,并成功研发了具有独特负泊松比效应的吸能型NPR锚杆。NPR锚杆在抗剪、抗动载荷和吸能方面比传统材料锚杆更具优势,有利于岩土锚固领域向更深部的软岩支护方向发展。
随着采掘深度的不断加大,软岩体所表现出的非线性物理力学现象也更加复杂,吸能锚杆仍需在新材料和新结构、与围岩间的协调工作机制、多场耦合下的锚固机理、杆体腐蚀问题及信息智能化设计方法与工艺方面继续开展深入研究。
本文分别对传统支护材料和负泊松比材料/结构吸能锚杆的材料性能、结构形式、工作原理及力学特性等进行介绍,分析了吸能锚杆面临的科学问题,并展望了其研究前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李景文
乔建刚
付旭
刘晓立
关键词:  岩土锚固  吸能锚杆  大变形控制  支护材料/结构  可延伸型  可滑移型  负泊松比    
Abstract: Energy-absorbing bolt has effectively solved the problem of high deformation and instantaneous high dynamic load of rock and soil layer and played an important role in deep soft rock engineering since the 90s of 20 century.The traditional supporting materials of energy-absorbing bolts generally include bolt body, bracket, nut and anchoring agent. The bolt body materials are generally round steel and threaded steel, which show excellent material properties under static and dynamic loading conditions. Resin anchoring agent is one of the main anchoring agents, which can be divided into four types: slow, medium, fast and super fast. Australia and China have developed two-speed resin anchoring agent successfully.
At present, dozens of energy absorbing bolts have been developed, such as cone bolt, D-bolt, Garford bolt, Yield-Lok bolt and Roofex bolt. These bolts can be divided into two categories: extendable and slippable. For example, Cone bolt absorbs and transfers the swelling deformation energy of surrounding rock mainly by the slip of cone in anchorage agent. D-bolt absorbs and transfers the swelling deformation energy of surrounding rock mainly by the yielding deformation of paddle-shaped or corrugated anchorage elements on the bar. Both Garford solid bolt and Roo-fex bolt depend on tension load to force the bolt body to be extruded from the slippery element (sleeve shape, inner diameter less than bolt dia-meter), so as to absorb and transfer the swelling deformation energy of surrounding rock.
For the above energy-absorbing bolts, the tension load (working resistance) varies with displacement and the elongation is limited. When the expansive deformation energy of surrounding rock is large enough, the bolt support system is easy to be damaged by impact, and it is difficult to meet the requirements of large deformation control. In view of this, Academician Manchu He proposed the concept of negative Poisson’s ratio (NPR) material/structure for the first time in the field of geotechnical anchorage, and successfully developed energy-absorbing NPR bolts with unique negative Poisson’s ratio effect. NPR bolt has more advantages than traditional material bolt in shear resistance, dynamic load resistance and energy absorption, which is helpful for the development of deep soft rock support in the field of geotechnical anchorage.
With the increase of mining depth, the nonlinear physical and mechanical phenomena in soft rock mass become more and more complex. Energy-absorbing bolts still need to be further studied in terms of new materials and structures, coordination mechanism with surrounding rocks, anchorage mechanism under multi-field coupling, corrosion problem of bolts and intelligent design method and technology of information.
In this paper, the material properties, structural forms, working principles and mechanical properties of traditional supporting materials and negative Poisson’s ratio material/structure energy-absorbing bolts are introduced. The scientific problems faced by energy-absorbing bolts are analyzed and their research prospects are forecasted in order to adapt to new development.
Key words:  ground anchorage    energy-absorbing bolt    large-deformation control    bolt materials/structure    extendable type    slippable type    negative Poisson’s ratio
                    发布日期:  2019-05-10
ZTFLH:  TD35  
基金资助: 国家重点研发计划重点专项(2017YFC0805404);天津市科技计划项目科技支撑重点项目(18YFZCSF00720);河北省建设科技研究指导性计划项目(20182051);河北省高等学校科学技术研究项目(QN2017003)
通讯作者:  qiaojg363@126.com   
作者简介:  李景文,2004年7月毕业于哈尔滨工业大学,获得管理学学士学位。现为河北工业大学土木与交通学院博士研究生,在乔建刚教授的指导下进行研究。目前主要研究领域为地下结构抗浮工程关键技术研究。乔建刚,河北工业大学土木与交通学院教授、博士研究生导师。1987年7月本科毕业于太原科技大学机械工程学院,2006年6月在北京工业大学交通运输规划与管理专业取得博士学位。先后完成国家自然科学基金、国家科技重大专项、交通部、国家安全生产监督总局、天津市、山西省科技项目和企业技术攻关项目。主要从事道路交通安全的研究工作。近年来,获得包括中国公路学会科技一等奖在内的省部级以上奖励5项,获得发明专利6项,编写行业、地方标准6项。在交通与土木领域发表论文100余篇,包括《中国公路学报》、《华中科技大学学报》、《中国安全科学学报》、《公路交通科技》、TRB和PED等。
引用本文:    
李景文, 乔建刚, 付旭, 刘晓立. 岩土锚固吸能锚杆支护材料/结构及其力学性能研究进展[J]. 材料导报, 2019, 33(9): 1567-1574.
LI Jingwen, QIAO Jiangang, FU Xu, LIU Xiaoli. Research Progress on Material/Structure and Mechanical Properties of Energy-absorbing Bolt Used in Ground Anchorage. Materials Reports, 2019, 33(9): 1567-1574.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100030  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1567
1 Cheng L K. China Civil Engineering Journal,2001,34(3),7(in Chinese).
程良奎.土木工程学报,2001,34(3),7.
2 Zhang L W, Wang R. Rock and Soil Mechanics,2002,23(5),627(in Chinese).
张乐文,汪稔.岩土力学,2002,23(5),627.
3 Cheng L K. Chinese Journal of Rock Mechanics and Engineering,2005,24(21),3803(in Chinese).
程良奎.岩石力学与工程学报,2005,24(21),3803.
4 Cheng L K, Zhang P W, Wang F. Chinese Journal of Rock Mechanics and Engineering,2015,34(4),668(in Chinese).
程良奎,张培文,王帆.岩石力学与工程学报,2015,34(4),668.
5 He M C. Journal of China Coal Society,2014,39(8),1409(in Chinese).
何满朝.煤炭学报,2014,39(8),1409.
6 Kang H P. Journal of China University of Mining & Technology,2016,45(6),1071(in Chinese).
康红普.中国矿业大学学报,2016,45(6),1071.
7 Wei S J, Li K, Wu Y F, et al. China Safety Science Journal,2016,26(9),90(in Chinese).
韦四江,李奎,吴怡凡,等.中国安全科学学报,2016,26(9),90.
8 Feng X T, Zhang C Q, Chen B R, et al. Chinese Journal of Rock Mechanics and Engineering,2012,31(10),1983(in Chinese).
冯夏庭,张传庆,陈炳瑞,等.岩石力学与工程学报,2012,31(10),1983.
9 He M C, Li C, Gong W L, et al. Chinese Journal of Rock Mechanics and Engineering,2016,35(8),1513(in Chinese).
何满朝,李晨,宫伟力,等.岩石力学与工程学报,2016,35(8),1513.
10 Charlie Chunlin Li. International Journal of Rock Mechanics & Mining Sciences,2010,47(3),396.
11 Charlie Chunlin Li. Rock Mechanics and Rock Engineering,2010,43(4),491.
12 Yu Chen, Charlie Chunlin Li. Tunnelling and Underground Space Technology,2015,45,99.
13 Zhang S, Ju S Y, Gao S J. Mining & Processing Equipment,2015,43(12),1(in Chinese).
张盛,句世元,高帅杰.矿山机械,2015,43(12),1.
14 Li C, He M C, Gong W L. Coal Science and Technology,2015,43(9),53(in Chinese).
李晨,何满朝,宫伟力,等.煤炭科学技术,2015,43(9),53.
15 Kang H P, Wang J H, et al. Rock bolting theory and complete technology for coal roadways, Coal Industry Press, China,2007(in Chinese).
康红普,王金华,等.煤巷锚杆支护理论与成套技术,煤炭工业出版社,2007.
16 Lin J, Wu Y Z, Ding J, et al. Journal of China Coal Society,2016,41(3),552(in Chinese).
林建,吴拥政,丁吉,等.煤炭学报,2016,41(3),552.
17 Kang H P, Lin J, Wu Y Z, et al. Journal of China Coal Society,2015,40(1),11(in Chinese).
康红普,林建,吴拥政,等.煤炭学报,2015,40(1),11.
18 Kang H P, Wu J X. Journal of China Coal Society,2012,37(1),8(in Chinese).
康红普,吴建星.煤炭学报,2012,37(1),8.
19 Hu B, Kang H P, Lin J. Journal of China Coal Society,2012,29(5),644(in Chinese).
胡滨,康红普,林建.煤炭学报,2012,29(5),644.
20 Jager A J. In: International Symposium on Rock Support. Sudbury,1992,pp.621.
21 Ortlepp W D. In: International Symposium on Rock Support. Sudbury,1992,pp.593.
22 Li S M, Li X J, Xu B. Sichuan Building Science,2014,40(1),43(in Chinese).
李世民,李晓军,徐宝.四川建筑科学研究,2014,40(1),43.
23 Simser B, Andrieux P, Langevin F, et al. In: Deep and High Stress Mi-ning Conference. Quebec,2006,pp.13.
24 Forbes B, VlachopoulosN. In: Proceedings of the 69th Canadian Geotechnical Conference. Vancouver,2016,pp.143.
25 Yu Chen, Charlie Chunlin Li. Tunnelling and Underground Space Technology,2015,45,99.
26 Ortlepp W D. Tunnelling and Underground Space Technology,2001,16(1),41.
27 Stewart R A, Reimold W U, Charlesworth E G. Tectonophysics,2001,337(3),173.
28 Varden R, Lachenicht R, Player J. In: Conference Record of the Tenth AusIMM Underground Operators’ Conference 2008—“Boom and Beyond” Proceedings. Launceston,2008,pp.19.
29 Villaescusa E, Varden R, Hassell R. International Journal of Rock Mechanics & Mining Sciences, 2008,45(1),94.
30 Charlie Chunlin Li. Rockbolting principles and applications. Elsevier, Norwaylands,2017.
31 Li C. Study on impacting and elongation dynamic mechainal characteristics of NPR bolt. Ph.D. Thesis, China University of Mining & Technology, China,2016(in Chinese).
李晨.NPR锚杆冲击拉伸动力学特性研究.博士学位论文,中国矿业大学,2016.
32 Ozbay U, Neugebauer E. In: Conference Record of the 7th International Symposium on Rockburst and Seismicity in Mines. Salzburg,2009,pp.1081.
33 Yang Z C, Deng Q T. Advances in Mechanics,2011,41(3),335(in Chinese).
杨智春,邓庆田.力学进展,2011,41(3),335.
34 Yao Z N. Dynamic crushing performance of auxetic honeycombs and functionally graded honeycombs. Master’s Thesis, Chang’ an University, China,2015(in Chinese).
姚兆楠.负泊松比蜂窝材料和功能梯度蜂窝材料的冲击动力学性能研究.硕士学位论文,长安大学,2015.
35 Shi Q. Optimization and mechanics characteristics study of the negative Poisson’s ratio honeycomb sandwich structure. Master’s Thesis, Harbin Institute of Technology, China,2014(in Chinese).
史齐.负泊松比蜂窝夹芯结构性能表征及优化设计.硕士学位论文,哈尔滨工业大学,2014.
36 LuoY. Fabrication and characterization of auxetic shape memory foams. Master’s Thesis, Harbin Institute of Technology, China,2017(in Chinese).
罗云.负泊松比形状记忆泡沫的制备与力学性能分析.硕士学位论文,哈尔滨工业大学,2017.
37 Zhou G. Study on key techniques of NPR structure and its application in vehicle body design. Ph.D. Thesis, Hunan University, China,2015(in Chinese).
周冠.新型负泊松比结构关键技术研究及其在车身设计中的应用.博士学位论文,湖南大学,2015.
38 He M C, Li C, Gong W L. Chinese Journal of Rock Mechanics and Engineering,2015,34(11),2179(in Chinese).
何满朝,李晨,宫伟力.岩石力学与工程学报,2015,34(11),2179.
39 Li C, He M C, Gong W L. Journal of China Coal Society,2016,41(6),1393(in Chinese).
李晨,何满朝,宫伟力.煤炭学报,2016,41(6),1393.
No related articles found!
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed