Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2513-2523    https://doi.org/10.11896/cldb.18060112
  无机非金属及其复合材料 |
太赫兹波段二氧化钒薄膜的研究进展
张化福1,沙浩1,吴志明2,蒋亚东2,王操1,孙艳1,景强1
1.山东理工大学物理与光电工程学院,淄博 255049
2.电子科技大学光电科学与工程学院,电子薄膜与集成器件国家重点实验室,成都 610054
Recent Progress on Vanadium Dioxide Thin Film at Terahertz Range
ZHANG Huafu1, SHA Hao1, WU Zhiming2, JIANG Yadong2, WANG Cao1, SUN Yan1, JING Qiang1
1.School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049
2.State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054
下载:  全 文 ( PDF ) ( 3038KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在68 ℃附近,二氧化钒薄膜就能实现低温半导体相和高温金属相之间的一级可逆相变,相变时二氧化钒薄膜的太赫兹透过率和反射率等都会发生急剧的变化。更为重要的是,除了加热之外,其他激励方式,如光照、电场、太赫兹场等也能使二氧化钒薄膜发生相变。这一独特、优异的半导体-金属相变性能使得二氧化钒薄膜在太赫兹开关、调制器等领域具有巨大的应用前景。因此,二氧化钒薄膜已成为太赫兹材料与功能器件方面的一个研究热点。研究工作主要集中在二氧化钒薄膜的制备方法、相变性能及在太赫兹器件领域的应用三个方面。
探究制备高质量二氧化钒薄膜的方法是其获得优异的相变性能及应用的前提条件。在太赫兹波段,二氧化钒薄膜的常用制备方法有脉冲激光沉积法、磁控溅射法及溶胶-凝胶法。脉冲激光沉积法是最早用来研究太赫兹波段二氧化钒薄膜相变性能的薄膜制备方法,该法制备的薄膜质量高、相变性能好。磁控溅射法制备二氧化钒薄膜时,主要采用在氩气/氧气混合气氛下溅射金属钒靶的反应磁控溅射法。然而,利用反应溅射法时,二氧化钒薄膜的成膜条件范围很窄(尤其是氧流量比),不利于薄膜结构及性能的优化。为此,研究者们探索利用二氧化钒陶瓷材料作为溅射靶材来制备二氧化钒薄膜。尽管脉冲激光沉积法和溅射法被广泛应用于制备二氧化钒薄膜,但所需设备复杂且成本高。相比之下,溶胶-凝胶法设备简单、成本低且易于实现掺杂和成分控制,但薄膜附着性差。二氧化钒薄膜的相变性能研究主要包括不同的相变激励方式及相变性能的优化提高两个方面。二氧化钒薄膜的热致相变简单易控,但响应时间长;而光致及电致相变响应快,但实现相变的条件要求高,且调制幅度较小。二氧化钒薄膜相变性能的提高一直颇受关注,优化工艺条件、掺杂及制作超材料结构是目前常用的方法。在应用方面,二氧化钒薄膜主要是被用来制作太赫兹开关和太赫兹线偏振器、可调频滤波器、频率选择表面器及吸收器等太赫兹调制器。
本文对近年来太赫兹波段二氧化钒薄膜的制备方法、相变性能以及在太赫兹方面的应用进展进行了综述。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张化福
沙浩
吴志明
蒋亚东
王操
孙艳
景强
关键词:  太赫兹波  二氧化钒薄膜  相变  脉冲激光沉积法  溅射法  溶胶-凝胶法  太赫兹开关  太赫兹调制器    
Abstract: The reversible semiconductor-metal phase transition of vanadium dioxide thin films can be induced by heating at~68 ℃, accompanied by a giant and abrupt change of terahertz transmission. Moreover, the semiconductor-metal phase transition of vanadium dioxide thin film can be triggered not only by heating but also by optical excitation, electric field, terahertz field, etc. Owing to its excellent phase transition characteristics, vanadium dioxide thin film can be used in a wide variety of applications such as terahertz switching, terahertz modulator. As a result, vanadium dioxide thin film has been a hot topic in functional materials and devices at terahertz range. The researches mainly focus on the preparation me-thods, the phase transition properties and the applications of vanadium dioxide thin films at terahertz frequency range.
Exploring a simple and controllable thin film preparation method plays an important role in improving the semiconductor-mental transition properties and the application of vanadium dioxide. The methods mainly include pulsed laser deposition, magnetron sputtering and sol-gel method. Pulsed laser deposition can prepare high-quality vanadium dioxide films and was firstly used to investigate the semiconductor-metal transition pro-perties of vanadium dioxide thin film at terahertz range. Reactive magnetron sputtering technique from a metal vanadium target in Ar/O2 atmosphere is often used to deposit vanadium dioxide thin films. However,in order to prepare a vanadium dioxide phase, reactive sputtering requires a narrow range of experimental conditions, especially for the O2 flow ratio, which is unfavorable for improving the structure and the property. Hence, magnetron sputtering from a VO2 ceramic target is exploited to prepare vanadium dioxide thin film. Although both pulsed laser deposition and magnetron sputtering are widely used to prepare vanadium dioxide film, they have disadvantages of complex equipment and high cost. Sol-gel me-thod, as compared to pulsed laser deposition and magnetron sputtering, has advantages of simple equipment, small cost and easily doping. Study on semiconductor-mental transition properties of vanadium dioxide includes different triggering stimulus and performance optimization. Phase transition induced by heating is easy to be controlled, but it undergoes a long response time. For phase transition triggered by light and voltage, the case is on the contrary. Presently, not only improving the process conditions and doping but also designing the metamaterial has been utilized to improving the phase transition performance of vanadium dioxide film. Due to these unique phase transition properties, vanadium dioxide films have been intensively exploited in many potential applications such as terahertz switching elements, switchable linear polarizer, tunable filter, frequency selective surface and absorber.
This review summarizes the preparation methods of vanadium dioxide thin film in recent years, the semiconductor-metal phase transition properties and its applications at terahertz frequency range.
Key words:  terahertz wave    vanadium dioxide thin film    phase transition    pulsed laser deposition    magnetron sputtering    sol-gel method    terahertz switching    terahertz modulator
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  O484.4  
  TQ135.1  
基金资助: 国家自然科学基金重点项目(61235006)
作者简介:  张化福,山东理工大学物理与光电工程学院副教授,硕士研究生导师。2002年7月本科毕业于鲁东大学物理系,2014年12月取得电子科技大学光学工程博士学位。主要从事光电材料与器件的研究。
引用本文:    
张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
ZHANG Huafu, SHA Hao, WU Zhiming, JIANG Yadong, WANG Cao, SUN Yan, JING Qiang. Recent Progress on Vanadium Dioxide Thin Film at Terahertz Range. Materials Reports, 2019, 33(15): 2513-2523.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060112  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2513
[1] Liu S G. China Basic Science,2006,8(1),7(in Chinese).
刘盛刚.中国基础科学,2006,8(1),7.
[2] Ye L F. Study on terahertz sources based on optical rectification and novel terahertz guided wave structures. Ph. D. Thesis, University of Electronic Science and Technology of China, China,2013(in Chinese).
叶龙芳.基于光整流的太赫兹源与新型太赫兹导波结构研究.博士学位论文,电子科技大学,2013.
[3] Sun D D, Chen Z, Wen Q Y, et al. Acta Physica Sinica,2013,62(1),017202(in Chinese).
孙丹丹,陈智,文岐业,等.物理学报,2013,62(1),017202.
[4] Zhang Y, Feng Y J, Jiang T, et al. Carbon,2018,133,170.
[5] Liu Z Q, Chang S J, Wang X L, et al. Acta Physica Sinica,2013,62(13),130702(in Chinese).
刘志强,常胜江,王晓雷,等.物理学报,2013,62(13),13072.
[6] Morin F J. Physical Review Letters,1959,3(1),34.
[7] Jakub A K, Zhen H, Andrew S M, et al. Chemistry of Materials,2011,23(18),4105.
[8] Hilton D J, Prasankumar R P, Fourmaux S, et al. Physical Review Letters,2007,99(22),226401.
[9] Donev E U, Lopez R, Feldman L C, et al. Nano Letters,2009,9(2),702.
[10] Huang W X, Yin X G, Huang C P, et al. Applied Physics Letters,2010,96(26),261908.
[11] Du J, Gao Y F, Luo H J, et al. Solar Energy Materials and Solar Cells,2011,95(2),469.
[12] Chen S E, Lu H, Sanjaya B, et al. Thin Solid Films,2017,644,52.
[13] Pan G T, Yang Y L, Chong S, et al. Vacuum,2017,145,158.
[14] Wang S C, Kwadwo A O, Mai L Q, et al. Applied Energy,2018,211,200.
[15] Zhu M D, Qi H J, Wang B, et al. Journal of Alloys and Compounds,2018,740,844.
[16] Zhang H F, Wu Z M, Wu X F, et al. Thin Solid Films,2014,568,63.
[17] Jepsen P, Fischer B, Thoman A, et al. Physical Review B,2006,74(20),205103.
[18] Wen Q Y, Zhang H W, Yang Q H, et al. Applied Physics Letters,2010,97(2),021111.
[19] Shi Q W, Huang W X, Zhang Y X, et al. ACS Applied Materials & Interfaces,2011,3(9),3523.
[20] Driscoll T, Kim H T, Chae B G, et al. Science,2009,325(5947),1518.
[21] Ko C, Ramanathan S. Applied Physics Letters,2008,93(25),252101.
[22] Seo G, Kim B, Ko C, et al. IEEE Electron Device Letters,2011,32(11),1582.
[23] Xiong Y. The research on silica based vanadium dioxide thin films and its application of terahertz switch. Master’s Thesis, University of Electronic Science and Technology of China, China,2015(in Chinese).
熊瑛.硅基二氧化钒薄膜制备及在太赫兹开关器件方面的应用.硕士学位论文,电子科技大学,2015.
[24] Chen T, Hu M, Liang J R, et al. Journal of Optoelectronics?Laser,2011,22(9),1348(in Chinese).
陈涛,胡明,梁继然,等.光电子?激光,2011,22(9),1348.
[25] Wang C L, Tian Z, Xing Q R,et al. Acta Physica Sinica,2010,59(11),7857(in Chinese).
王昌雷,田震,邢岐荣,等.物理学报,2010,59(11),7857.
[26] Nakajima M, Takubo N, Hiroi Z, et al. Applied Physics Letters,2008,92(1),011907.
[27] Fan F, Gu W H, Chen S, et al. Optics Letters,2013,38(9),1582.
[28] Dong J, Li Y F, Chen L W, et al. In: Proceedings of SPIE—The International Society for Optical Engineering. Suzhou,2014,pp.9233.
[29] Mengkun Liu, Harold Y Hwang, Hu Tao, et al. Nature,2012,487(7407),345.
[30] Thompson Z J, Stickel A, Jeong Y G, et al. Nano Letter,2015,15(9),5893.
[31] Choi S B, Kyoung J S, Kim H S, et al. Applied Physics Letters,2011,98(7),071105.
[32] Kim H, Charipar N, Breckenfeld E, et al. Thin Solid Films,2015,596,45.
[33] Vegesna S, Zhu Y H, Zhao Y, et al. Journal of Electromagnetic Waves and Applications,2013,28(1),83.
[34] Wang S M, Liu M S, Kong L B, et al. Progress in Materials Science,2016,81,1.
[35] Liu H W, Wong H W, Wang S J, et al. Journal of Physics-condensed Matter,2012,24(41),415604.
[36] Liu H W, Wong H W, Wang S J, et al. Applied Physics Letters,2013,103(15),151908.
[37] Chen C H, Zhu Y H, Zhao Y, et al. Applied Physics Letters,2010,97(21),211905.
[38] Zhang H F, Wu Z M, Niu R H, et al. Applied Surface Science,2015,331,92.
[39] Brassard D, Fourmaux S, Jean-jacques M, et al. Applied Physics Letters,2005,87(5),051910.
[40] Ruzmetov D, Zawilski K T, Narayanamurti V, et al. Journal of Applied Physics,2007,102(11),113715.
[41] Zhang H F, Wu Z M, Yan D W, et al. Thin Solid Films,2014,552,218.
[42] Mandal P, Speck A, Ko C, et al. Optics Letters,2011,36(10),1927.
[43] Xia X X,Hu M, Zhu N W, et al. Journal of Optoelectronics?Laser,2014,25(4),681(in Chinese).
夏晓旭,胡明,朱乃伟,等.光电子?激光,2014,25(4),681.
[44] Gao Y F, Luo H J, Zhang Z T, et al. Nano Energy,2012,1(2),221.
[45] Xu F, Cao X, Luo H J, et al. Journal of Materials Chemistry C,2018,6,1903.
[46] Xiao Y, Zhai Z H, Shi Q W, et al. Applied Physics Letters,2015,107(3),031906.
[47] Shi Q W, Huang W X, Wu J, et al. Journal of Applied Physics,2012,112(3),033523.
[48] Eunsung Shin, KuanChang Pan, Weisong Wang, et al. Materials Research Bulletin,2018,101,287.
[49] Mao M, Huang W X, Zhang Y X, et al. Journal of Inorganic Materials,2012,27(8),891.
[50] Shi Q W, Huang W X, Zhang Y X, et al. Journal of Materials Science:Materials in Electronics,2012,23,1610.
[51] Chen Z, Wen Q Y, Dong K, et al. Chinese Physics Letters,2013,30(1),017102.
[52] Nicolasmond, Ali Hendaoui, Akram Ibrahim, et al. Applied Surface Science,2016,379,377.
[53] ZhaoY, Chen C H, Pan X, et al. Journal of Applied Physics,2013,114(11),113509.
[54] Wang C L, Wu S, Li Y F, et al. Spectroscopy and Spectral Analysis,2015,35(11),3046(in Chinese).
王昌雷,武帅,栗岩锋,等.光谱学与光谱分析,2015,35(11),3046.
[55] Yao T, Zhang X D, Sun Z H, et al. Physical Review Letters,2010,105(22),226405.
[56] Minah Seo, Jisoo Kyoung, Hyeongryeol Park, et al. Nano Letters,2010,10(6),2064.
[57] Jun-Hwan Shin, Kiwon Moon, Eui Su Lee, et al. Nanotechnology,2015,26(31),315203.
[58] Edward P J Parrott, Chunrui Han, Fei Yan, et al. Nanotechnology,2016,26(20),205206.
[59] Nouman M T, Hwang J H, Faiyaz M, et al. Optics Express,2018,26(10),12922
[60] Yoshiro Urade, Yosuke Nakata, Kunio Okimura, et al. Optics Express,2016,24(5),4405.
[61] Hashemi M R M, Yang S H, Wang T Y, et al. In:Conference on Lasers and Electro-Optics, CLEO 2015. San Jose,2015,pp.2267.
[62] Ding F, Zhong S M, Sergey I B . Advanced Optical Materials,2018,6(9),1701204.
[63] Song Z Y, Wang K, Li J W, et al. Optics Express,2018,26(6),7148.
[64] Li J B, Li J S. Electronic Components and Materials,2014,33(8),66(in Chinese).
李嘉斌,李九生.电子元件与材料,2014,33(8),66.
[65] Coppinger M J, Sustersic N A, Kolodzey J, et al. Optical Engineering,2011,50(5),053206.
[66] Gou J. Research on room temperature terahertz detector based on VO x microbolometer. Ph.D. Thesis, University of Electronic Science and Technology of China, China,2014(in Chinese).
苟君.基于氧化钒微测辐射热计的室温太赫兹探测器研究.博士学位论文,电子科技大学,2014.
[67] Hao L Y, Zhou X J, Yang Z B, et al. Appied Physics Letters,2016,109(23),233503.
[1] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[2] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[3] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[4] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[7] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[8] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[9] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[10] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[11] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[12] 周亚,李萍,左迎峰,袁光明,李贤军,吴义强. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989-2996.
[13] 毛虎,杨宏亮,史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[14] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[15] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed