Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13121-13130    https://doi.org/10.11896/cldb.19070076
  金属与金属基复合材料 |
面向机械装备健康监测的振动传感器研究现状
张永芳1, 王霞1,2, 邢志国2, 王海斗2, 黄艳斐2, 郭伟玲2
1 西安理工大学印刷包装与数字媒体学院,西安 710048
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Research on Vibration Sensors for Health Monitoring of Mechanical Equipment
ZHANG Yongfang1, WANG Xia1,2, XING Zhiguo2, WANG Haidou2, HUANG Yanfei2, GUO Weiling2
1 Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China
2 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
下载:  全 文 ( PDF ) ( 4553KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 大型机械装备的安全运行关乎国民经济的健康发展,对机械装备进行性能评估和健康监测,保证其安全、高效地运行尤为重要。应力、应变、速度、加速度、位移等振动参量作为评价机械装备运行状态的重要指标,不仅能实时反映装备的运行状态,而且能预测装备的服役寿命。因此,采集必要的结构振动信息成为机械装备健康监测中的重要环节。
振动信息的采集主要依赖于多种类型的振动传感器,加速度传感器和应变传感器是机械结构健康监测中普遍使用的振动传感器,其作为诊断机械装备结构损伤的工具,能够精确收集机械装备运行过程中的振动信号。目前,关于振动传感器的研究主要集中在材料的发展、传感器性能的优化以及新技术的引入等方面。无铅陶瓷不仅符合国家的生态需求,还赋予了传感器良好的高温等特性;柔性化压电复合材料的成功研制使传感器实现了轻量化,拓宽了压电传感器的使用范围。传感器性能的优化可以通过传感器电路设计、传感器结构优化等方法来实现。此外,压电晶体的切割方式、寄生电容的存在也分别影响着压电加速度传感器和电容式加速度传感器的灵敏度。印刷技术的发展使得具有柔性基板的应变传感器制作更加方便、快速。光纤光栅应变传感器因其良好的抗电磁干扰、抗腐蚀等优点,在机械结构健康监测中发挥着重要作用。此外,自供电技术、RFID等新技术在振动传感器中的应用,使其实现了无源、低成本的非接触测量。
本文综述了机械结构健康监测中常用的加速度传感器和应变传感器的特点及应用,详细分析了压电式加速度传感器和电容式加速度传感器以及电阻式传感器和光纤光栅应变传感器的发展现状,并论述了自供电振动传感器、RFID振动传感器等新型无源传感器的研究进展,探讨了振动传感器的发展趋势及应用前景,可为多种行业的机械装备健康监测提供理论与技术指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
ZHANG Yongfang
WANG Xia
XING Zhiguo
WANG Haidou
HUANG Yanfei
GUO Weiling
关键词:  健康监测  振动传感器  加速度传感器  应变传感器  光纤光栅传感器    
Abstract: The safe operation of large mechanical equipment is related to the healthy development of national economy, so it is particularly important to evaluate the performance and monitor the health of mechanical equipment to ensure its safe and efficient operation. Vibration parameters, such as stress, strain, velocity, acceleration and displacement, are important indexes for evaluating the operating state of mechanical equipment. They can not only reflect the operating state of equipment in real time but also predict the service life of equipment. Therefore, collecting necessary structural vibration information becomes an important link in the health monitoring of mechanical equipment.
Vibration information collection mainly relies on a variety of vibration sensors. Acceleration sensors and strain sensors are commonly used in mechanical structure health monitoring. As tools for diagnosing structural damage of mechanical equipment, they can accurately collect vibration signals during the operation of mechanical equipment. At present, the research of vibration sensor mainly focuses on the development of mate-rials, the optimization of sensor performance, the introduction of new technology and so on. Lead-free ceramics respond to the ecological needs of the country and have excellent characteristics such as good high temperature. Flexible piezoelectric composite materials make the sensor lightweight and broaden the application range of piezoelectric sensors. The optimization of sensor performance can be achieved by means of sensor circuit design and sensor structure optimization. In addition, the cutting mode of piezoelectric crystals and the presence of parasitic capacitance also affect the sensitivity of piezoelectric acceleration sensor and capacitive acceleration sensor respectively. With the development of printing technology, electronic components are easily embedded into the flexible matrix, reducing the production cost of strain gauge. Fiber Bragg grating strain sensor is playing an important role in the health monitoring of mechanical structure because of its good anti-electromagnetic interference and anti-corrosion advantages. In addition, self-powered technology, RFID and other new technologies used in vibration sensor,which achieves passive, low-cost and non-contact measurement.
This paper reviews the mechanical structure commonly used in health monitoring of the characteristics and applications of the acceleration sensor and strain sensor, illustrates the development status of piezoelectric acceleration sensor, the capacitive accelerometer, the resistive sensor and the fiber Bragg grating strain sensor, also discusses the research progress of new type of passive sensors such as self-supply vibration sensors, RFID sensor etc., discusses the development trend and application prospects of vibration sensor, which can provide a variety of industries of machinery and equipment health monitoring theory and technical guidance.
Key words:  equipment health monitoring    vibration sensor    acceleration sensor    strain sensor    fiber grating sensor
               出版日期:  2020-07-10      发布日期:  2020-06-24
ZTFLH:  TP212.9  
基金资助: 国家自然科学基金重点项目(51535011;51775554)
通讯作者:  xingzg2011@163.com   
作者简介:  张永芳,西安理工大学印刷包装与数字媒体学院副教授、硕士研究生导师。1998年6月本科毕业于甘肃工业大学机电工程学院,2007年11月在西北工业大学电子信息学院获得博士学位,2012年在国家留学基金委项目资助下于美国密歇根州立大学访问研究。近年来先后主持国家自然科学基金项目、陕西省自然科学基金和国家重点实验室开放课题等各类纵横向科研项目20余项。发表论文40余篇,其中SCI和EI检索论文30余篇。
邢志国,现任再制造国家重点实验室助理研究员。主要从事摩擦学与再制造寿命评估方向的教学与科研工作,硕士研究生导师。主持项目包括自然基金面上项目2项、北京市基金面上项目、清华大学摩擦学实验室基金重点项目。参与国家973项目、国防973项目、科技委基础加强项目、杰出青年基金、自然基金重点项目、北京市重大项目等10余项。现任中国机械工程学会摩擦学分会青年摩擦工作委员会副主任;中国大百科全书第三版机械工程卷绿色制造章节词条撰写人;教育部一万个科学难题制造卷编写组成员;兼任三部国际国内SCI和EI检索期刊的审稿人。
引用本文:    
张永芳, 王霞, 邢志国, 黄艳斐, 郭伟玲. 面向机械装备健康监测的振动传感器研究现状[J]. 材料导报, 2020, 34(13): 13121-13130.
ZHANG Yongfang, WANG Xia, XING Zhiguo, WANG Haidou, HUANG Yanfei, GUO Weiling. Research on Vibration Sensors for Health Monitoring of Mechanical Equipment. Materials Reports, 2020, 34(13): 13121-13130.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070076  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13121
1 Zeng Y J,Jin X H, He Y Q, et al. Railway Locomotive & Car, 2019,39(2),104(in Chinese).
曾燕军,金希红,何永强,等. 铁道机车车辆, 2019,39(2),104.
2 Gatti M. Engineering Structures,2019,195,200.
3 Zhao J, Jia J, Wang H,et al. IEEE Sensors Journal, 2007, 7(8),1102.
4 Popova I, Lestev A, Semenov A, et al. IEEE Aerospace & Electronic Systems Magazine, 2009, 24(5),33.
5 Zhang Z, Ji L, Huang Z, et al. Iet Signal Processing, 2011, 5(8),1.
6 Selim H, Girgis G A. IEEE Transactions on Industrial Electronics, 1986, 33(1),44.
7 Sabato A, Feng M, Fukuda Y, et al. IEEE Sensors Journal, 2016,16(9),2942.
8 Ziegler L, et al.Marine Structures, 2019,66,154.
9 Bharadwaj K, Sheidaei A, Afshar A, et al. Measurement, 2019,139, 326.
10 Casiraghi C, Macucci M, Parvez K, et al. Carbon, 2018, 129, 462.
11 Zhang H. Research on measurement technique for MEMS accelerometer and signal process circuit. Master’s Thesis, Soochow University, China, 2014(in Chinese).
张寒. MEMS加速度传感器及其调理电路测试技术研究,硕士学位论文,苏州大学,2014.
12 Reguieg S K, Ghemari Z, Benslimane T, et al. Sensing and Imaging: An International Journal, 2019, 20(1),1.
13 Ghemari Z. In: 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM).Algiers,2018,pp.29.
14 Liu Z, Cai C, Yu M, et al. In:2016 3rd International Conference on Information Science and Control Engineering (ICISCE). Beijing, 2016,pp.1.
15 Zhou H, Han R H, Xu M H, et al. In: 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). Xi’an,2016,pp.455.
16 Kong L F, Yu F P, Qin L F, et al. In: 2017 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Chengdu,2017,pp.27.
17 Wu G D, Liu X L, Yu F P, et al. In: 2019 Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). Harbin, 2019,pp.1.
18 Denghua L, Xiangyu G, Feng Z, Ferroelectrics, 2010, 405(1), 126.
19 Wu J G, Gao X Y, Chen J G, et al. Acta Physica Sinica, 2018, 67(20),10(in Chinese).
吴金根,高翔宇,陈建国,等.物理学报, 2018, 67(20),10.
20 Kubasov, Ilya, et al. Sensors, 2019,19, 614.
21 Wang H S, Weng X Q, Xu J L, et al. China Ceramics, 2019, 55 (2),1(in Chinese).
王海圣,翁新全,许静玲,等.中国陶瓷,2019,55(2),1.
22 Schulze R, Gessner T, Heinrich M, et al. In: 21st IEEE International Symposium on Applications of Ferroelectrics. Aveiro, 2012,pp.1.
23 Long J, Songyuan M, Weili D, et al. Nano Energy, 2018,50,632.
24 Lu X, Qu H, Skorobogatiy M. Scientific Reports, 2017, 7(1),2907.
25 Yuan F. The design and manufacture of the tri-axis capactive accelerometer based on the single mass. Master’s Thesis, Soochow University,China,2015(in Chinese).
袁飞. 电容式单质量三轴加速度计的研制.硕士学位论文,苏州大学,2015.
26 Singh Panwar, B. Materials Today: Proceedings, 2018,5(7), 15481.
27 Burbaum C, Mohr J, Bley P, et al. Sensors & Actuators A Physical, 1991, 27(1-3),559.
28 Szaniawski K, Napieralski A, Sekalski P, et al. In: International Confe-rence on Microelectronics. Serbia, 2004,pp.371.
29 Chae J, Kulah H, Najafi K. Journal of Microelectromechanical Systems, 2005, 14(2), 235.
30 Tavakoli H, Momen H G, Sani E A. In: Electrical Engineering. Pakistan, 2017,pp.131.
31 Falconi C, Fratini M. Sensors and Actuators B: Chemical, 2008, 129(1),59.
32 Ko Hyoungho, Cho Dongil Dan. Sensors and Actuators: A Physical, 2010, 158(1), 72.
33 Liu G, Yang F, Bao X, et al. Sensors, 2015, 15(3),6342.
34 Zhou W, He J B, Yu H J, et al. Sensors and Actuators A: Physical, 2019,290,239.
35 Qu H, Peng B, Peng P, et al. Instrument Technique and Sensor, 2018(6),15(in Chinese).
曲昊,彭倍,彭鹏,等.仪表技术与传感器,2018(6),15.
36 Dong X, Huang Q W, Xu W, et al. Sensors and Actuators A: Physical, 2019, 285, 581.
37 Nawrot U, Geernaert T, Pauw B D, et al. In: 25th International Confe-rence on Optical Fiber Sensors. Korea, 2017,pp.1.
38 Zhou K, Wu Z Y. Engineering Structures,2017,141(15),184.
39 Zhang T X. Fiber accelerometer based on frequency modulation. Master's Thesis, Shandong Normal University,China,2015(in Chinese).
张童心.基于频率调制的光纤加速度计的研究.硕士学位论文,山东师范大学,2015.
40 Pecora A, Maiolo L, Minotti A, et al. In: 2014 IEEE Metrology for Ae-rospace. Benevento,2014,pp. 84.
41 Wang Yanlei, et al. Construction and Building Materials, 2018,186,367.
42 Quiros-Solano W F, Gaio N, Silvestri C, et al. In: 19th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers). Taiwan, China, 2017,pp. 1296.
43 Shakeel M, Khan W A, Rahman K. Sensors and Actuators A: Physical, 2017, 258,123.
44 Zhang Y, Anderson N, Bland S, et al. Sensors and Actuators A: Physical, 2017, 253, 165.
45 Bessonov A, Kirikova M, Haque S, et al. Sensors and Actuators A: Phy-sical, 2014, 206, 75.
46 Maddipatla D, Narakathu B B, Avuthu S G R, et al. In: 2015 IEEE Sensors.Busan,South Korea, 2015,pp. 1.
47 Maiwald M, Werner C, Zoellmer V, et al. Sensors and Actuators A: Physical, 2010, 162(2),198.
48 Wang X, Sparkman J, Gou J. Composites Communications, 2017, 3,1.
49 Enser H, Sell J K, Hilber W, et al. Sensors and Actuators A: Physical, 2018, 281,258.
50 Hoshizaki T, Yokayama K. Nature, 1965, 207(4999), 880
51 Wu B, Liu B, Zheng J, et al. Measurement, 2018, 122, 297.
52 Serafini J, Bernardini G, Porcelli R, et al. Aerospace Science and Technology, 2019,127,551.
53 Chen, S Z, Gang W, Feng D C. Mechanical Systems and Signal Proces-sing,2019,127,551.
54 Cheilakou E, Tsopelas N, Anastasopoulos A, et al. Procedia Structural Integrity,2018, 10,25.
55 Oh B K, Kim K J, Kim Y, et al. Applied Soft Computing,2017, 58,576.
56 Maiwald M, Werner C, Zoellmer V, et al. Sensors and Actuators A: Physical, 2010, 162(2), 198.
57 Sell J K, Enser H, Schatzl-Linder M, et al.In:2017 IEEE Sensors.UK,2017,pp.1.
58 Gräbner D, Dumstorff G, Lang W. Procedia Manufacturing, 2018, 24, 258.
59 Zhao H, Lin Z Q, Xiao K, et al. Electronic Design Engineering, 2014(19),10(in Chinese).
赵浩, 林宗强, 肖恺,等.电子设计工程, 2014(19),10.
60 Lv J L, Hu Z C, Ren G F, et al. Optik, 2019,178, 146.
61 Zhang J, Guo S L, Wu Z S, et al. Engineering Structures, 2015, 99, 173.
62 Tsushima N, Su W, Gutierrez H, et al. Aerospace Science and Technology, 2017,71,285.
63 Zhang Z, Liu C, Li H, et al. Photonic Sensors, 2017, 7(2),140.
64 Wang X, Guo Y, Xiong L. Chinese Optics Letters, 2018, 16(7), 070604.
65 Liu A C, Fan W J, Fan L L. In: 2018 Asia Communications and Photo-nics Conference (ACP).Hangzhou,2018,pp. 1.
66 Tian K, Liu Y, Wang Q. Optical Fiber Technology: Materials, Devices and Systems, 2005, 11(4),370.
67 Mondal S K, Tiwari U, Poddar G C, et al. Review of Scientific Instruments, 2009, 80(10),1442.
68 Guo G. Optik-International Journal for Light and Electron Optics,2019,182, 331.
69 Wada D, Igawa H, Murayama H. Measurement, 2016, 94,745.
70 Huang J, Zhou Z, Wen X, et al. Measurement, 2013, 46(3),1041.
71 Esposito, Flavio et al. Optics & Laser Technology,2019, 113,198.
72 Echevarria J, Quintela A, Jauregui C, et al. IEEE Photonics Technology Letters, 2001, 13(7),696.
73 James S W, Tatam R P, Twin A, et al. Measurement Science and Technology,2002,13(10),87.
74 Qiang H, Xingzhe W, Mingzhi G, et al. IEEE Transactions on Applied Superconductivity, 2019,29,1.
75 Li R Y, Tan Y G, Chen Y Y, et al. Optical Fiber Technology,2019,48,199.
76 Guo Y B, Zhang Z, Zhang S W. Friction, 2019, 7, 289.
77 Su Z, Wu H, Chen H, et al. Nano Energy, 2017, 42,129.
78 Zhao X J, Wei G W, Li X H, et al.Nano Energy, 2017,34,549.
79 Zhang Z X, He J, Wen T, et al. Nano Energy, 2017, 33,88.
80 Jiang C, Xie L Y, Xue S T. Structural Engineers, 2017,33(3),199(in Chinese).
蒋灿,谢丽宇,薛松涛.结构工程师,2017,33(3),199.
81 Cazeca M J, Mead J, Chen J, et al. Sensors and Actuators A: Physical, 2013, 190,197.
82 Chakaravarthi G, Prasath L K, Philip J, et al. IEEE Sensors Journal, 2018, 99,1.
83 Zhang J, Tian G Y, Zhao A B. NDT & E International,2017,86,89.
[1] 朱洪艳, 吴宝昌, 林长亮, 王金亮, 王刚. 直升机复合材料结构基于振动健康监测的研究进展[J]. 材料导报, 2020, 34(Z1): 581-584.
[2] 丁杨, 周双喜, 董晶亮, 王中平, 郑智秋. 人工智能方法在土木工程监测中的运用[J]. 材料导报, 2019, 33(z1): 274-277.
[3] 薛子凡, 邢志国, 王海斗, 李国禄, 刘喆. 面向结构健康监测的压电传感器综述*[J]. 《材料导报》期刊社, 2017, 31(17): 122-132.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed