Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5142-5147    https://doi.org/10.11896/cldb.18110022
  高分子与聚合物基复合材料 |
基于双硫键的荧光传感器在生物检测及靶向治疗药物输送系统中的应用
张晓琳1,2, 丰晓婷1,2, 詹世平1,2, 卢春兰1,2, 李鸣明1,2, 侯维敏1,2
1 大连大学环境与化学工程学院,大连 116622;
2 辽宁省化工环保工程技术研究中心,大连 116622
The Application of Disulfide-based Fluorescent Sensor in Biological Detection and Targeted Theranostic Drug Delivery
ZHANG Xiaolin1,2, FENG Xiaoting1,2, ZHAN Shiping1,2, LU Chunlan1,2, LI Mingming1,2, HOU Weimin1,2
1 College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China;
2 Chemical and Environmental Protection Engineering Research Technology Center, Dalian 116622, China
下载:  全 文 ( PDF ) ( 3065KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 谷胱甘肽几乎存在于身体的每一个细胞,是细胞内重要的调节代谢物质, 对维持人体内正常的免疫系统及生化防御体系不可或缺,实时快速地实现谷胱甘肽的检测对疾病的监控以及早期诊断治疗具有重要意义。基于双硫键的荧光传感器可对细胞内谷胱甘肽实现荧光检测,响应迅速,灵敏度高,得到了研究人员的普遍关注。
  基于双硫键的荧光传感器不仅可通过荧光强度实现对谷胱甘肽的荧光检测,近年来还实现了对谷胱甘肽的比率荧光检测,避免了生物体内背景荧光的干扰。但是大多数荧光传感器在生物体内检测没有靶向性并且只能单纯地实现硫醇含量的荧光检测,而在硫醇含量远超过正常细胞的肿瘤细胞内,更迫切需要实现的是在诊断后实现肿瘤治疗。近年来,研究者们在这方面做了大量的工作,并取得了丰硕的成果,经过巧妙设计将基于双硫键的荧光传感器与抗肿瘤药物、肿瘤细胞靶向单元有机结合,实现了集诊断与治疗为一体的、基于双硫键的荧光传感器。
  该类荧光传感器若要同时实现荧光信号诊断与靶向肿瘤释放药物,四个重要的元素不可或缺:(1)荧光信号;(2)可切断的连接;(3)靶向配体;(4)抗肿瘤药物。这类荧光传感器设计关键就是可切断的连接,而双硫键在肿瘤细胞内高浓度的谷胱甘肽环境中能够实现双硫键的断裂,成为设计的核心环节。当双硫键断裂后可实现抗肿瘤药物(如喜树碱、阿霉素、胞苷和顺铂等)的释放。通过引入性能优异的荧光发色团可实现双硫键断裂前后荧光信号的变化,为降低对生物体的损伤,近红外荧光团如氟硼吡咯和菁类等荧光团受到了更多的关注。靶向配体则选择了叶酸、半乳糖、维生素等局部定位基团靶向肿瘤细胞,靶向性的提高极大降低了药物的副作用。近年来该领域发展迅速,不仅能实现靶向肿瘤释放药物的个性化治疗,还可以通过双硫键断裂前后的荧光信号来监测药物释放过程。
  本综述重点总结了近年来基于双硫键切断基础上设计的各种荧光传感器以及靶向肿瘤的药物输送系统进展,并简单阐述了其在生物成像、药物输送等领域的应用,以进一步加深对细胞摄取以及药物释放机制的理解,促进细胞内荧光检测传感器以及药物输送系统的分子设计进一步发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓琳
丰晓婷
詹世平
卢春兰
李鸣明
侯维敏
关键词:  双硫键  靶向药物  荧光传感器  谷胱甘肽  生物检测    
Abstract: Glutathione, which exists in almost every cell of the body, is an important regulatory metabolite in the cell and indispensable for maintaining the normal immune system and biochemical defense system in the human body. Detection of glutathione in real time and quickly is of great significance for disease monitoring and early diagnosis and treatment. Fluorescence sensor based on disulfide bond has received considerable attention due to its rapid response to intracellular glutathione with high sensitivity.
  Fluorescence sensor based on disulfide bond can not only detect glutathione by fluorescence intensity, but also detect glutathione by ratio fluorescence to avoid interference of background fluorescence in vivo. However, most fluorescence sensors can only achieve the fluorescence detection of thiol content and cannot obtain targeted therapy. At present, in tumor cells with far higher thiol content than normal cells, it is more urgent to realize tumor treatment after diagnosis. In recent years, researchers have done a lot of work in this field and achieved fruitful results. Through ingenious design, fluorescence sensors based on bisulfide bond were designed to combine with anti-tumor drugs within one molecular system to achieve disease diagnosis and treatment.
  The fluorescent sensor that allows targeted therapeutic release and imaging simultaneously, contains the following elements: ⅰ. fluorescent reporters, ⅱ. cleavable linkers, ⅲ. cancer targeting ligands, ⅳ. masked chemotherapeutic agents. The cleavable disulfide bonds, as the key of designing such fluorescent sensors, can be efficiently cleaved in the high concentration of glutathione in tumor cells to release antitumor drugs (such as camptothecin, adriamycin, cytidine and cisplatin). Excellent fluorophores that have proved attractive for constructing disulfide-based sensors include naphthalimide, coumarin, BODIPY, near-infrared CY7 and so on. The tumor targeting capability may be enhanced by attaching to specific site-localizing entities, such as folate, galactose, vitamin and other local localization groups, which display intrinsic selectivity for can-cer cells over normal cells due to their genetic signatures or because of an overexpression of specific receptors on certain tumor cells. With the rapid development in this field, disulfide-based fluorescent sensors can not only achieve personalized treatment of targeted tumor release drugs, but also monitor the drug release process by fluorescence signal.
  This review gives a retrospection of the research efforts with respect to the fluorescence sensors based on disulfide bond and targeting drug delivery system, and expounds simply its application in biological imaging and drug delivery, to further deepen the understanding of cell uptake and drug release mechanism. The aim is to promote the further development of molecular design of intracellular fluorescence detection sensors and drug delivery systems.
Key words:  disulfide bond    targeted drug    fluorescent sensor    glutathione    biological detection
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  O69  
基金资助: 辽宁省自然科学基金指导计划项目(201602036);国家自然科学基金(21102014)
通讯作者:  zhangxiaolin@dlut.edu.cn   
作者简介:  张晓琳,2009年毕业于大连理工大学,获得应用化学博士学位。2009—2011年于大连理工大学从事博士后研究工作。2011年至今为大连大学环境与化学工程学院副教授。目前主要研究领域为有机功能材料构建。在国外高水平期刊如Angew. Chem. Int. Ed,Inorg. Chem., Organic Letters, Dalton Transaction, Adv. Funct. Mater.等发表SCI论文十余篇,获授权发明专利多项。
引用本文:    
张晓琳, 丰晓婷, 詹世平, 卢春兰, 李鸣明, 侯维敏. 基于双硫键的荧光传感器在生物检测及靶向治疗药物输送系统中的应用[J]. 材料导报, 2020, 34(5): 5142-5147.
ZHANG Xiaolin, FENG Xiaoting, ZHAN Shiping, LU Chunlan, LI Mingming, HOU Weimin. The Application of Disulfide-based Fluorescent Sensor in Biological Detection and Targeted Theranostic Drug Delivery. Materials Reports, 2020, 34(5): 5142-5147.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110022  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5142
1 Ojima I. Accounts of Chemical Research, 2008, 41(1), 108.
2 Singh R, Whitesides G M. Journal of the American Chemical Society, 1990, 112(17), 6304.
3 Bachrach S M, Woody J T, Mulhearn D C. Journal of Organic Chemistry, 2002, 67, 8983.
4 Rahman I, MacNee W. Free Radical Biology and Medicine, 2000, 28, 1405.
5 Hwang C, Sinskey A J, Lodish H F. Science, 1992, 257, 1496.
6 Hong R, Han G, Fernandez J M, et al. Journal of the American Chemical Society, 2006, 128(4), 1078.
7 Chen X Q, Zhou Y, Peng X J, et al. Chemical Society Reviews, 2010, 39, 2120.
8 Ellman G L. Archives of Biochemistry and Biophysics, 1959, 82(1), 70.
9 Wi Y J, Le H T, Verwils P, et al. Chemical Communications, 2018, 54, 8897.
10 Lee M H, Yang Z G, Lim C W, et al. Chemical Reviews, 2013, 113, 5071.
11 Reddie K G, Humphries W H, Bain C P, et al. Organic Letters, 2012, 14(3), 680.
12 Lee J H, Lim C S, Tian Y S, et al. Journal of the American Chemical Society, 2010, 132(4), 1216.
13 Lim C S, Masanta G, Kim H J, et al. Journal of the American Chemical Society, 2011, 133(29),11132.
14 Lee M H, Han J H, Kwon P S, et al. Journal of the American Chemical Society, 2012, 134(2), 1316.
15 Pullela P K, Chiku T, Carvan M J, et al. Analytical Biochemistry, 2006, 352(2), 265.
16 Piggott A M, Karuso P. Analytical Chemistry, 2007, 79(22), 8769.
17 Cao X W, Lin W Y, Yu Q X. Journal of Organic Chemistry, 2011, 76(18), 7423.
18 Zhu B C, Zhang X L, Li Y M, et al. Chemical Communications, 2010, 46, 5710.
19 Lee M H, Sessler J, Kim J S. Accounts of Chemical Research, 2015, 48, 2935.
20 Sun B J, Luo C, Yu H, et al. Nano Letters, 2018, 18(6), 3643.
21 Li B Q, Shan M, Di X, et al. RSC Advances, 2017, 7, 30242.
22 Meng Q Y, Hu H, Zhou L P, et al. Polymer Chemistry, DOI:10.1039/C8PY01160E.
23 Lee M H, Sharma A, Chang M J, et al. Chemical Society Reviews, 2018, 47(1), 28.
24 Gao M, Yu F, Lv C, et al. Chemical Society Reviews, 2017, 46, 2237.
25 Wong P T, Choi S K. Chemical Reviews, 2015, 115, 3388.
26 Chen S, Zhao X, Chen J, et al. Bioconjugate Chemistry, 2010, 21, 979.
27 Lee M H, Kim J Y, Han J H, et al. Journal of the American Chemical Society, 2012, 134(30), 12668.
28 Kim T, Jeon H M, Le H T, et al. Chemial Communications, 2014, 50, 7690.
29 Chen H Z, Tham H P, Ang C Y, et al. Applied Materials Interfaces, 2016, 8(37), 24319.
30 Hu Y Y, Zeng F. Materials Science and Engineering C, 2017, 72, 77.
31 Bhuniya S, Maiti S, Kim E J, et al. Angewandte Chemie International Edition, 2014, 53(17), 4469.
32 Maiti S, Park N, Han J H, et al. Journal of the American Chemical So-ciety, 2013, 135(11), 4567.
33 Liu Y, Pei Q, Chen L, et al. Journal of Materials Chemistry B, 2016, 4, 2332.
34 Bhuniya S, Lee M H, Jeon H M, et al. Chemical Communications, 2013, 49, 7141.
35 Yang Z G, Lee J H, Jeon H M, et al. Journal of the American Chemical Society, 2013, 135(31), 11657.
36 Kong F P, Liang Z Y, Luan D R, et al. Analytical Chemistry, 2016, 88(12), 6450.
37 Ye M Z, Wang X H, Tang J B, et al. Chemical Science, 2016, 7, 4958.
38 Kong Y L, Smith J, Li K, et al. Bioorganic Medicinal Chemistry, 2017, 25(7), 2226.
39 Wu X, Sun X, Guo Z, et al. Journal of the American Chemical Society, 2014, 136, 3579.
[1] 李旭,汪子孺,杨莉,张振东,张友婷,杜毅帆. 稻糠基磁性高吸油材料的仿生制备及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 219-222.
[2] 屈孟男, 马利利, 何金梅, 袁明娟, 姚亚丽, 刘向荣. 特异润湿型油水分离材料的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 152-161.
[3] 张振江, 祝丽荔, 金娟. 聚氨酯泡沫吸附剂的制备及其在金属离子富集/分离方面的应用*[J]. 《材料导报》期刊社, 2017, 31(5): 34-39.
[4] 李茂红, 温静, 李依芮, 屈树新, 曾晓辉, 王平. 控制聚合与沉淀协同作用改善高铁轨道板涂料用水玻璃性能[J]. 材料导报, 2018, 32(24): 4264-4268.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed