Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4264-4268    https://doi.org/10.11896/j.issn.1005-023X.2018.24.010
  无机非金属及其复合材料 |
控制聚合与沉淀协同作用改善高铁轨道板涂料用水玻璃性能
李茂红1, 温静1, 李依芮1, 屈树新2, 曾晓辉1, 王平1
1 西南交通大学高速铁路线路轨道工程教育部重点实验室,成都 610031;
2 西南交通大学材料科学与工程学院,成都610031
Improving the Performance of Water Glass Used in the High-speed Rail Slab Coating by the Synergistic Effect of Controlling Polymerization and Precipitation
LI Maohong1, WEN Jing1, LI Yirui1, QU Shuxin2, ZENG Xiaohui1, WANG Ping1
1 Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031;
2 School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031
下载:  全 文 ( PDF ) ( 1321KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 CaO可能对水玻璃酸碱度、Zeta电位产生影响,引起调控水玻璃中硅氧聚合体的聚合度和形成沉淀的协同作用,有望改善水玻璃的力学强度和耐水性。欲提高环保型高铁轨道板涂料用水玻璃的力学强度和耐水性,本实验拟采用CaO对水玻璃进行改性,并探索改性的相关机理。实验结果表明,CaO改性水玻璃力学强度提高77%,耐水性也明显提高。Zeta电位仪、pH计、X射线衍射仪、傅里叶红外光谱仪及固体核磁共振仪检测结果表明:添加CaO使水玻璃Zeta电位值、pH值均增大;在形成Ca2+的协同作用下,导致硅氧聚合体解聚、重组并限制聚合,主要以链状聚合体(Q2)存在。同时Ca2+与Q2结合形成耐水性较好、力学强度较高的CaO·xSiO2·yH2O(CSH)凝胶,而不是含大量Na+、耐水性差的硅氧聚合体。可以推断,CaO可产生控制聚合度和沉淀协同效应改善水玻璃性能,有望应用于高铁轨道板涂料用水玻璃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李茂红
温静
李依芮
屈树新
曾晓辉
王平
关键词:  水玻璃  聚合  沉淀  力学强度  耐水性    
Abstract: As CaO may affect the pH and Zeta potential of water glass and cause a synergistic effect of controlling polymerization of polymers in water glass and forming precipitation, it is expected to improve the mechanical strength and water resistance of water glass. To improve the mechanical strength and water resistance of water glass used in high-speed rail slab coating, this paper tries to modify water glass by CaO and to explore the mechanism of such modification. The results showed a higher water resistance and a 77% rise in mechanical strength for water glass modified by CaO. The investigation of Zeta electrometer, pH meter, X-ray diffraction (XRD), Fourier-transform infrared spectrometer (FTIR), and solid-state high-resolution 29Si MAS NMR (NMR) found that the addition of CaO increased pH and zeta potential of water glass; caused silicon oxygen polymer to depolymerize and recombine; and led to silicon oxygen polymer mainly existing in the form of chain polymer (Q2) under the synergistic effects of Ca2+. At the same time, Ca2+ was combined with Q2 to form CaO·xSiO2·yH2O (CSH) gel which is of better water resistance and higher mechanical strength, rather than silica oxygen polymer with a large amount of Na+ and poor water resistance. It is concluded that the addition of CaO improves mechanical strength and water resistance of water glass by the synergistic effect of controlling polymerization and precipitation, and therefore CaO has good prospects for application in water glass used in high-speed rail slab coating.
Key words:  water glass    polymerization    precipitation    mechanical strength    water resistance
                    发布日期:  2019-01-23
ZTFLH:  TQ17  
  O69  
基金资助: 国家杰出青年科学基金(51425804);国家自然科学青年基金(51708458)
通讯作者:  王平:通信作者,男,1969年生,博士研究生导师,教授,主要从事轨道动力学及轨道平顺性的研究 E-mail:wping@home.swjtu.edu.cn   
作者简介:  李茂红:女,1977年生,博士,高级工程师,主要从事骨水泥、建筑水泥、水玻璃等胶凝材料的研究 E-mail:sclimaohong@swjtu.edu.cn
引用本文:    
李茂红, 温静, 李依芮, 屈树新, 曾晓辉, 王平. 控制聚合与沉淀协同作用改善高铁轨道板涂料用水玻璃性能[J]. 材料导报, 2018, 32(24): 4264-4268.
LI Maohong, WEN Jing, LI Yirui, QU Shuxin, ZENG Xiaohui, WANG Ping. Improving the Performance of Water Glass Used in the High-speed Rail Slab Coating by the Synergistic Effect of Controlling Polymerization and Precipitation. Materials Reports, 2018, 32(24): 4264-4268.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.010  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4264
1 Yang J J, Zhang N, Gao M M, et al. Temperature warping and it’s impact on train-track dynamic response of CRTSⅡ ballastless track[J].Engineering Mechanics,2016,33(4):210(in Chinese).
杨静静,张楠,高芒芒,等.CRTSⅡ型无砟轨道温度翘曲变形及其对车线动力响应的影响[J].工程力学,2016,33(4):210.
2 Liu Y, Zhao G T. Analysis of early gap between layers of CRTSⅡ ballastless track structure[J].China Railway Science,2013,34(4):1(in Chinese).
刘钰,赵国堂.CRTSII型板式无砟轨道结构层间早期离缝研究[J].中国铁道科学,2013,34(4):1.
3 Zhang Z T, Wang K T, Mo B H, et al. Preparation and characte-rization of a reflective and heat insulative coating based on geopolymers[J].Energy Buildings,2015,87(1):220.
4 Comite A, Cozza E S, Tanna G D, et al. Thermal barrier coatings based on alumina microparticles[J].Progress Organic Coating,2015,78(1):124.
5 Huang Q Z, Shi J F, Wang L L. Study on sodium water glass-based anti-reflective film and its application in dye-sensitized solar cells[J].Thin Solid Films,2016,610(1):19.
6 苏洁.建筑涂料[M].上海:同济大学出版社,1997:174.
7 Haq E U, Padmanabhan S K, Karim M R A, et al. Setting and curing of mortars obtained by alkali activation and inorganic polymerization from sodium silicate and silica aggregate[J].Construction Building Materials,2016,105(15):291.
8 Hu Jun. The research on a new silicate coating of heat insulation[D].Xi’an:Northwest University,2008(in Chinese).
胡军.一种新型硅酸盐保温隔热涂料的研究[D].西安:西北大学,2008.
9 Wang F H. Foundations of key technology of the sodium silicate sand casting process curing with microwave[D].Wuhan: Huazhong University of Science and Technology,2012(in Chinese).
汪华方.微波硬化水玻璃砂应用的关键技术基础[D].武汉:华中科技大学,2012.
10 Shewale P M, Rao A V, Rao A P. Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels[J].Applied Surface Science,2008,254(21):6902.
11 Xu J. Infrared spectroscopy analysis of modified sodium silicate[J].Foundry,2008,57(8):834(in Chinese).
许进.改性水玻璃的红外光谱分析[J].铸造,2008,57(8):834.
12 Zhu C X, Lu C. The progress to recognize the hardening mechanism of waterglass[J].Inorganic Chemicals Industry,2001,33(1):22(in Chinese).
朱纯熙,卢晨.水玻璃硬化的认识过程[J].无机盐工业,2001,33(1):22.
13 崔中敏.钠水玻璃涂料的固化技术及其应用[J].山东建筑工程学院学报,1996,11(3):103.
14 钱觉时.建筑材料学[M].武汉:武汉理工大学出版社,2007:64.
15 Li T, Deng X Y, Li J B, et al. A study on the modified aluminosilicate sand stabilization material[J].Materials Review,2010,24(s1):431(in Chinese).
李婷,邓湘云,李建保,等.铝硅酸盐改性固沙材料的研究[J].材料导报,2010,24(s1):431.
16 袁爱群,黄平.聚合磷酸铝水玻璃固化剂及应用[J].四川化工与腐蚀控制,1999,2(3):9.
17 邱学婷,肖磊,石晓波.新型水玻璃耐水固化剂——磷酸硅[J].无机盐工业,1990(6):24.
18 Allali F, Joussein E, Kandri N I, et al. The influence of calcium content on the mixture of sodium silicate with different additives: Na2CO3, NaOH and AlO(OH)[J].Construction & Building Mate-rials,2016,121:588.
19 Wang J N, Fan Z T, Zan X L. Study on performance characteristics of sodium silicate sand hardened by superfines[J].China Mechanical Engineering,2009(8):999(in Chinese).
王继娜,樊自田,昝小磊.超细粉末硬化水玻璃砂的性能特征研究[J].中国机械工程,2009(8):999.
20 Song Z N, Xue X, Li Y W, et al. Experimental exploration of the waterproofing mechanism of inorganic sodium silicate-based concrete sealers[J].Construction & Building Materials,2016,104(1):276.
21 Böschel D, Janich M, Roggendorf H. Size distribution of colloidal silica in sodium silicate solutions investigated by dynamic light scattering and viscosity measurements[J].Journal of Colloid & Interface Science,2003,267(2):360.
22 Yang R, Zhang G Y, Li M, et al. Preparation and properties of nano-SiO2 powder by supercritical drying[J].Journal of the Chinese Ceramic Society,2005,33(3):281(in Chinese).
杨儒,张广延,李敏,等.超临界干燥制备纳米SiO2粉体及其性质[J].硅酸盐学报,2005,33(3):281.
23 Nordström J, Nilsson E, Jarvol P, et al. Concentration- and pH-dependence of highly alkaline sodium silicate solutions[J].Journal of Colloid & Interface Science,2011,356(1):37.
24 Guo X, Shi H, Dick W A. Compressive strength and microstructural characteristics of class C fly ash geopolymer[J].Cement & Concrete Composites,2010,32(2):142.
25 Dimas D, Giannopoulou I, Panias D. Polymerization in sodium silicate solutions: A fundamental process in geopolymerization techno-logy[J].Journal of Materials Science,2009,44(14):3719.
26 Halasz I, Agarwal M, Li R, et al. What can vibrational spectroscopy tell about the structure of dissolved sodium silicates?[J].Microporous & Mesoporous Materials,2010,135(1):74.
27 Hu Z B, Yan Y, Zheng S L, et al. Preparation and characterization of humidity control material based on diatomite/ground calcium carbonate composite[J].Journal of Inorganic Materials,2016,31(1):81(in Chinese).
胡志波,演阳,郑水林,等.硅藻土/重质碳酸钙复合调湿材料的制备及表征[J].无机材料学报,2016,31(1):81.
28 Ravikumar D, Neithalath N. Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH[J].Cement & Concrete Composites,2012,34(7):809.
29 Bosque I F S D, Martínez-Ramírez S, Blanco-Varela M T. FTIR study of the effect of temperature and nanosilica on the nano structure of C-S-H gel formed by hydrating tricalcium silicate[J].Construction & Building Materials,2014,52(2):314.
30 Paiste P, Liira M, Heinmaa I, et al. Alkali activated construction materials: Assessing the alternative use for oil shale processing solid wastes[J].Construction & Building Materials,2016,122:458.
31 Cai X, He Z, Shao Y, et al. Macro- and micro-characteristics of cement binders containing high volume fly ash subject to electrochemical accelerated leaching[J].Construction & Building Materials,2016,116:25.
32 Phoo-Ngernkham T, Maegawa A, Mishima N, et al. Effects of so-dium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer[J].Construction & Building Materials,2015,91:1.
33 Hu W L. Research and engineering application of heat-resistant so-dium water glass adhesion[D].Guangzhou: South China University of Technology,2011(in Chinese).
胡文垒.钠水玻璃耐高温胶粘剂的研究及工程应用[D].广州:华南理工大学,2011.
34 Ye Jiayuan, Zhang Wensheng,Shi Di. Setting acceleration and strength enhancement derived from calcium species for alkali-activated cementitious materials[J].Journal of the Chinese Ceramic Society,2017,45(8):1101(in Chinese).
叶家元,张文生,史迪.钙对碱激发胶凝材料的促凝增强作用[J].硅酸盐学报,2017,45(8):1101.
[1] 展红全, 邓册, 吴传琦, 李小红, 谢志鹏, 汪长安. 新颖十二面体钛酸钡纳米晶体的水热生长机理[J]. 材料导报, 2019, 33(z1): 98-101.
[2] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[3] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[4] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[5] 王婷, 张守海, 蹇锡高, 刘乾, 刘泽元. 界面聚合法合成含杂萘酮联苯结构共聚芳酯[J]. 材料导报, 2019, 33(z1): 495-498.
[6] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[7] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[8] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[9] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[10] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[11] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[12] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[13] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[14] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[15] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed