Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 152-161    https://doi.org/10.11896/j.issn.1005-023X.2017.019.021
  吸附分离材料 |
特异润湿型油水分离材料的研究进展*
屈孟男, 马利利, 何金梅, 袁明娟, 姚亚丽, 刘向荣
西安科技大学化学与化工学院,西安 710054
Research Progress of Specific Wetting Oil-Water Separation Materials
QU Mengnan, MA Lili, HE Jinmei, YUAN Mingjuan, YAO Yali, LIU Xiangrong
College of Chemistry and Chemical Engineering,Xi’an University of Science and Technology, Xi’an 710054
下载:  全 文 ( PDF ) ( 2003KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,海上石油泄漏事故和各种含油有害污水排放日益频繁,不仅造成了严重的环境污染,同时也危及到人类健康。因此,如何高效分离油水混合物成为当前材料学领域一个亟待解决的问题和研究热点。目前,具有被油或水所选择性润湿的特异浸润性材料已被广泛应用于油水分离,它们具有高效的油水分离效果,应用前景相当广阔。综述了近年来各类新型、高效的特异润湿型油水分离材料的制备方法及其吸油能力、分离效率以及重复使用性能,总结了油水分离材料领域的研究现状及尚待解决的难点,同时也展望了该领域未来研究的热点及发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
屈孟男
马利利
何金梅
袁明娟
姚亚丽
刘向荣
关键词:  特异润湿型  油水分离  超疏水-超亲油  超亲水-超疏油  智能型    
Abstract: In recent years, maritime oil spillage accidents and all kinds of harmful oily sewage emissions are becoming increa-singly frequent. They have caused serious pollution to the environment, and also brought great harm to the health of human beings. Therefore, how to effectively deal with the oil-polluted water is a problem which needs to be solved quickly, and also a hot research spot in material science field. Presently, materials which can be selectively wetted by oil or water, have displayed the highly oil/water separation efficient and been widely used in oil/water separation because of their unique wetting behavior. This article summarizes the preparation of all kinds of new-type and efficient oil-water separation materials in recent years and their capacity of oil absorption, efficiency of separation and performance of repeated use. Afterwards, the research status of the field of oil/water separation materials are introduced, some related difficulties that remain to be solved and prospected its future researching focus and developing directions are pointed out.
Key words:  specific wetting    oil-water separation    superhydrophobic-superoleophilic    superhydrophilic-superoleophobic    intelligent
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  O69  
基金资助: *国家自然科学基金(21473132;21373158);陕西省自然科学基金(2014JM2047);陕西省科学技术研究发展计划项目(2013KJXX-41);西安科技大学“胡杨人才”工程支持计划
作者简介:  屈孟男:男,1981年生,副教授,硕士研究生导师,研究方向为固体表面特异润湿性的调控,仿生功能界面材料的制备及物理化学性质 E-mail:mnanqu@gmail.com
引用本文:    
屈孟男, 马利利, 何金梅, 袁明娟, 姚亚丽, 刘向荣. 特异润湿型油水分离材料的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 152-161.
QU Mengnan, MA Lili, HE Jinmei, YUAN Mingjuan, YAO Yali, LIU Xiangrong. Research Progress of Specific Wetting Oil-Water Separation Materials. Materials Reports, 2017, 31(19): 152-161.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.021  或          http://www.mater-rep.com/CN/Y2017/V31/I19/152
1 Burton Z, Bhushan B. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces[J]. Ultramicroscopy,2006,106(8):709.
2 Poynor A, Hong L, Robinson I K, et al. How water meets a hydrophobic surface[J]. Phys Rev Lett,2006, 97(26):266101.
3 Onda T, Shibuichi S, Satoh N, et al. Super-water-repellent fractal surfaces[J]. Langmuir,1996,12(9):2125.
4 Chen W, Fadeev A Y, Hsieh M C. Ultra hydrophobic and ultra hydrophobic surfaces: Some comments and examples[J]. Langmuir,1999,15(10):3395.
5 Wang G, Liang W, Wang B, et al. Conductive and transparent superhydrophobic films on various substrates by in situ deposition[J]. Appl Phys Lett,2013,102(20):203703.
6 Elsharkawy M, Schutzius T M, Megaridis C M. Inkjet patterned superhydrophobic paper for open-air surface microfluidic devices[J]. Lab Chip,2014,14(6):1168.
7 Li Jian, Gao Likun. Photocontrolled wettability conversion properties of antibacterial Ag-Ti composite film based on wood substrate[J]. J Forest Environ,2015,35(3):193(in Chinese).
李坚, 高丽坤. 光控润湿性转换的抑菌性木材基银钛复合薄膜[J]. 森林与环境学报,2015,35(3):193.
8 Nagappan S, Park S S, Yu E J, et al. A highly transparent, amphiphobic, stable and multi-purpose poly (vinyl chloride) metallopolymer for anti-fouling and anti-staining coatings[J]. J Phys Chem A,2013,1(39):12144.
9 Wang B, Zhang Y B, Liang W X, et al. A simple route to transform normal hydrophilic cloth into a superhydrophobic-superoleophilic hybrid surface[J]. J Phys Chem A,2014,2(21):7845.
10 Lv J, Song Y, Jiang L, et al. Bio-inspired strategies for anti-icing[J]. ACS Nano,2014,8(4):3152.
11 Yang H, Zhu H, Hendrix M M R M, et al. Temperature-triggered collection and release of water from fogs by a sponge-like cotton fabric[J]. Adv Mater,2013,25(8):1150.
12 Nosonovsky M, Bhushan B. Biomimetic superhydrophobic surfaces: Multiscale approach[J]. Nano Lett,2007, 7(9):2633.
13 Xie Qingwei, Quan Xuejun, Li Ruiheng, et al. Review on preparation of superhydrophobic metal mesh and its application in oil-water separation[J]. J Chongqing University of Technology(Nat Sci),2017,31(6):99(in Chinese).
谢清伟, 全学军, 李瑞恒, 等. 超疏水金属网膜的制备及油水分离应用[J]. 重庆理工大学学报(自然科学),2017,31(6):99.
14 Young T. An essay on the cohesion of fluids[J]. Philosophical Trans Royal Soc London,1805,95:65.
15 Wenzel R N. Resistance of solid surfaces to wetting by water[J]. J Ind Eng Chem,1936,28(8):988.
16 Cassie A, Boxter S. Wettability of porous surfaces[J]. Trans Faraday Soc,1944,40:546.
17 Patankar N A. Mimicking the lotus effect: Influence of double roughness structure and slender pillars[J]. Langmuir,2004,20(19):8209.
18 Marmur A. The lotus effect: Super-hydrophobicity and metastability[J]. Langmuir,2004,20(9):3517.
19 Akhavan B, Jarvis K, Majewski P. Hydrophobic plasma polymer coated silica particles for petroleum hydrocarbon removal[J]. ACS Appl Mater Interfaces,2013,5(17):8563.
20 Patowary M, Pathak K, Ananthakrishnan R. A facile preparation of superhydrophobic and oleophilic precipitated calcium carbonate sorbent powder for oil spill clean-ups from water and land surfaces[J]. RSC Adv,2015,5(97):79852.
21 Banerjee A, Gokhale R, Bhatnagar S, et al. MOF derived porous carbon-Fe3O4 nanocomposite as a high performance, recyclable environmental super adsorbent[J]. J Mater Chem,2012,22(37):19694.
22 Chen M, Jiang W, Wang F, et al. Synthesis of highly hydrophobic floating magnetic polyme nanocomposites for the removal of oils from water surface[J]. Appl Surf Sci,2013,286(12):249.
23 Zhang L, Wu J, Wang Y, et al. Combination of bioinspiration: A general route to superhydrophobic particles[J]. J Am Chem Soc,2012,134(24):9879.
24 Zang D L, Li U F, Zhang M, et al. Novel superhydrophobic and superoleophilic sawdust as a selective oil sorbent for oil spill clean up[J]. Chem Eng Res Des,2015,102:34.
25 Zang D L, Zhang M, Li U F, et al. Superhydrophobic and superoleophilic corn straw fibers as effective oil sorbents for the recovery of spilled oil[J]. J Chem Technol Biotechnol,2016,91(9):2449.
26 Feng L, Zhang Z, Mai Z, et al. A superhydrophobic and superoleophilic coating mesh film foe the separation of oil and water[J]. Angew Chem Int Ed,2004,43(15):2012.
27 Cao Y Z, Zhang X Y, Tao L, et al. Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation[J]. ACS Appl Mater Interfaces,2013,5(10):4438.
28 Liu Y, et al. A facile electrodeposition process for the fabrication of superhydrophobic and superoleophilic copper mesh for efficient oil-water separation[J].Ind Eng Chem Res,2016,55(10):2704.
29 Yu Y L, Chen H, Liu Y, et al. Superhydrophobic and superoleophilic boron nitride nanotube-coated stainless steel meshes for oil and water separation[J]. Adv Mater Interfaces,2014,1(1):1300002.
30 Zhu J F, Liu B, Li L Y, et al. Simple and green fabrication of a superhydrophobic surface by one-step immersion for continuous oil/water separation[J]. J Phys Chem A,2016,120(28):5617.
31 Zhang M, Wang C, Wang S, et al. Fabrication of superhydrophobic cotton textiles for water-oil separation based on drop-coating route[J]. Carbohydr Polym,2013,97(1):59.
32 Zhang M, Li J, Zang D L, et al. Preparation and characterization of cotton fabric with potential use in UV resistance and oil reclaim[J]. Carbohydr Polym,2016,137(10):264.
33 Li F, Liu X J, Ge L. Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption[J]. ACS Appl Mater Interfaces,2015,7(1):791.
34 Yokio N, Manabe K, et al. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resis-tance enabled by mesh structure[J]. ACS Appl Mater Interfaces,2015,7:4809.
35 Wu L, Zhang J P, Li B C, et al. Mechanical and oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation[J]. J Colloid Interface Sci,2014,413:112.
36 Zhang X F, Zheng X, Guo Z Y. Underwater self-cleaning scaly fabric membrane for oily water separation[J]. ACS Appl Mater Interfaces,2015,7(7):4336.
37 Zhang W B, Shi Z, Zhang F, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux[J]. Adv Mater,2013,25:2071.
38 Li X, Wang M, Wang C, et al. Facile immobilization of Ag nanocluster on nanofibrous membrane for oil/water separation [J]. ACS Appl Mater Interfaces,2014,6:15272.
39 Jiang L, Zhao T Y, Zhang D M, et al. Facile fabrication of a polyethylene mesh for oil/water separation in a complex environment[J]. ACS Appl Mater Interfaces,2016,8(36):24186.
40 Zhou K, Zhang Q G, Li H M, et al. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions[J]. Nanoscale,2014,6:10363.
41 Wang B, Liang W, Guo Z, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature[J]. Chem Soc Rev,2015,44(1):336.
42 Du R, Gao X, Feng Q, et al. Microscopic dimensions engineering: Stepwise manipulation of the surface wettability on 3D substrates for oil/water separation[J]. Adv Mater,2016,28(5):936.
43 Zhang W, Liu M, Liu Y, et al. 3D porous poly(l-lactic acid) foams composed of nanofibers, nanofibrous microsheaves and microspheres and their application in oil-water separation[J]. J Phys Chem A,2015,3(26):14054.
44 Gao X, Zhou J, Du R, et al. Robust superhydrophobic foam: A graphdiyne-based hierarchical architecture for oil/water separation[J]. Adv Mater,2016,28(1):168.
45 Zhu Qing. Preparation of superhydrophobic polyurethane (PU) sponge and study on oil-water separation characteristics[D]. Harbin: Harbin Institute of Technology,2014(in Chinese).
祝青.超疏水聚氨酯海绵的制备及油水分离特性研究[D].哈尔滨:哈尔滨工业大学,2014.
46 Chen X M, Weibel J A, Garimella S V. Continuous oil-water separation using polydimethylsiloxane-functionalized melamine sponge[J]. Ind Eng Chem Res,2016,55(12):3596.
47 Yang Y, et al. Multifunctional, robust sponges by a simple adsorption combustion method[J]. J Phys Chem A,2015,3(11):5875.
48 Zhang L H, Xu L D, Sun Y L, et al. Robust and durable superhydrophobic polyurethane sponge for oil/water separation[J]. Ind Eng Chem Res,2016,55(43):11260.
49 Ruan C, Ai K, Li X, et al. A superhydrophobic sponge with excellent absorbency and flame retardancy[J]. Angew Chem Int Ed,2014,53(22):5556.
50 Yang Yu. Preparation of hydrophobic three-dimensional porous materials and their application in oil water separation[D]. Gangzhou: South China University of Technology,2015(in Chinese).
杨宇.疏水性三维多孔材料的制备及其在油水分离中的应用[D].广州:华南理工大学,2015.
51 Gui X, Wei J, Wang K, et al. Carbon nanotube sponges[J]. Adv Mater,2010,22(5):617.
52 Bi H, Xie X, Yin K, et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents[J]. Adv Funct Mater,2012,22(21):4421.
53 Li J, Li J, Meng H, et al. Ultra-light, compressible and fire-resis-tant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids[J]. J Phys Chem A,2014,2(9):2934.
54 Xue Z, Wang S, Lin L, et al. A novel superhydrophobic and underwater superoleophobic hydrogel-coated mesh for oil/water separation[J]. Adv Mater,2011,23(37):4270.
55 Gondal M A, Sadullah M S, Dastageer M A, et al. Study of factors governing oil-water separation process using TiO2 films prepared by spray deposition of nanoparticle dispersions[J]. ACS Appl Mater Interfaces, 2014,6(16):13422.
56 Yuan T Y, Meng J Q, Hao T Y, et al. A scalable method toward superhydrophobic and underwater superoleophobic PVDF membranes for effective oil/water emulsion separation[J]. ACS Appl Mater Interfaces, 2015,7(27):14896.
57 Yong J L, et al. Oil-water separation: Oil-water separation: A gift from the desert[J]. Adv Mater Interfaces,2016,3(7):1500650.
58 Yu J H, Wen Q, Di J C, et al. A kind of inorganic separating membrane and its application in oil/water separation: CN, 201210086896 [P]. 2012-07-25.
59 Luo Z Y, Chen K X,et al. Superhydrophilic nickel nanoparticles with core-shell structure to decorate copper mesh for efficient oil/water separation[J]. J Phys Chem C,2016,120(23):12685.
60 Ji Qiaoqiao. Preparation of super hydrophilic material with high hydrophobic oil and its application in oil water separation[D]. Tianjin: Tianjin University of Technology,2014(in Chinese).
姬悄悄.高疏油超亲水材料的制备及其在油水分离中的应用[D].天津:天津理工大学,2014.
61 Cheng Z, Wang J, Lai H, et al. pH-controllable on-demand oil/water separation on the switchable superhydrophobic/ superhydrophilic and underwater low-adhesive superoleophobic copper mesh film[J]. Langmuir,2015,31(4):1393.
62 Liu N, Lin X, Zhang W. A pure inorganic ZnO-Co3O4 overlapped membrane for efficient oil/water emulsions separation[J]. Sci Rep,2015,5:9688.
63 Yang J, Zhang Z Z, Xu X H, et al. Superhydrophilic-superoleophobic coatings[J]. J Phys Chem,2012,22(7):2834.
64 Brown P S, Bhushan B. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation[J]. Sci Rep,2015,456:210.
65 Xu Z, Zhao Y, et al. A superamphiphobic coating with an ammonia-triggered transition to superhydrophilic and superoleophobic for oil-water separation[J]. Angew Chem Int Ed,2015,54(15):4527.
66 Gao C R, Sun Z X, Li K, et al. Integrated oil separation and water purification by a double-layer TiO2-based mesh[J]. Energy Environ Sci,2013,6(4):1147.
67 Stepien M, Saarinen J J, Teisala H, et al. ToF-SIMS analysis of UV-switchable TiO2-nanoparticle-coated paper surface[J]. Langmuir,2013,29(11):3780.
68 Li J J, et al. Smart fiber membrane for pH-induced oil/water separation[J]. ACS Appl Mater Interfaces,2015,7(35):19643.
69 Xu Z G, Zhao Y, Wang H X, et al. Fluorine-free superoleophobic coatings with pH-induced wettability transition for controllable oil-water separation [J]. ACS Appl Mater Interfaces,2016,8(8):5661.
70 Zhou Y N, Li J J, Luo Z H. Photo ATRP-based fluorinated thermo sensitive block copolymer for controllable water/oil separation[J]. Ind Eng Chem Res,2015,54(43):10714.
71 Cao Y Z, Liu N, Fu C K, et al. Thermo and pH dual-responsive materials for controllable oil/water separation[J]. ACS Appl Mater Interfaces,2014,6(3):2026.
72 Wang Y F, Lai C L, Wang X W, et al. Beads-on-string structured nanofibers for smart and reversible oil/water separation with outstanding antifouling property[J]. ACS Appl Mater Interfaces,2016,8(38):25612.
73 Shen Weiren, Zhao Wenkuan, He Fei, et al. TiO2-based photocatalysis and its applications for waste water treatment[J]. Prog Chem,1998,10(4):349(in Chinese).
沈伟韧, 赵文宽, 贺飞, 等. TiO2 光催化反应及其在废水处理中的应用[J]. 化学进展,1998,10(4):349.
[1] 王洪杰, 王闻宇, 王赫, 金欣, 李嘉禄, 林童, 朱正涛. 用于油水分离的静电纺纳米纤维膜研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 144-151.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed