Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 162-167    https://doi.org/10.11896/j.issn.1005-023X.2017.019.022
  吸附分离材料 |
桥连双亚胺介孔材料对Cr(Ⅵ)的吸附性能*
谢慧琳1, 胡文斌1,2, 龙湘南1, 贾振宇1, 刘其海1, 周新华1
1 仲恺农业工程学院化学化工学院,广州 510225;
2 中山大学惠州研究院,惠州 516081
Adsorption Properties of Double Imine Bridged Mesoporous Silica to Chromium(Ⅵ)
XIE Huilin1, HU Wenbin1,2, LONG Xiangnan1, JIA Zhenyu1, LIU Qihai1, ZHOU Xinhua1
1 College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225;
2 Huizhou Research Institute of Sun Yat-sen University, Huizhou 516081
下载:  全 文 ( PDF ) ( 1610KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以CTAB/PAANa为混合模板剂,正硅酸乙酯为硅源,自制双亚胺基桥连硅烷偶联剂为改性剂,采用共缩聚法制备了双亚胺桥连介孔硅材料PMOS。利用FTIR、XRD、N2吸附-脱附、固体核磁和TEM对PMOS材料的结构和形貌进行了表征,将其应用于对Cr(Ⅵ)的吸附,并系统考察了pH值、吸附剂用量和吸附时间对PMOS吸附Cr(Ⅵ)的影响,且重点探究了PMOS对Cr(Ⅵ)的吸附行为。结果表明,PMOS具有高度有序的介孔结构,其对Cr(Ⅵ)的最佳吸附条件为:pH=6,初始浓度为200 mg/L,吸附时间为8 h。PMOS对Cr(Ⅵ)的吸附遵循Langmuir模型,在45 ℃时,其对Cr(Ⅵ)的饱和吸附量为428.61 mg/g。此外,PMOS对Cr(Ⅵ)的吸附行为可用准二级动力学模型来描述,且PMOS与Cr(Ⅵ)之间的作用力主要为静电作用力和配位作用力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢慧琳
胡文斌
龙湘南
贾振宇
刘其海
周新华
关键词:  介孔硅  双亚胺  六价铬离子  吸附    
Abstract: The diimine bridged mesoporous silica (PMOS) was synthesized by copolycondensation method with CTAB/PAANa as mixed template, tetraethyl orthosilicate as silicon source and homemade silane coupling agent as modifier. The structure and morphology of PMOS materials were characterized by FTIR, XRD, BET, solid-state nuclear magnetic and TEM. The effects of pH value, mass rations of adsorbent and absorption time on adsorption for Cr(Ⅵ) were discussed. Besides, the adsorption behavior of PMOS for Cr(Ⅵ) was mainly investigated. The results showed that PMOS was highly ordered mesoporous structure. While pH=6, the concentration of initial solution was 200 mg/L, adsorption time was 8 h, the PMOS showed excellent adsorption for Cr(Ⅵ). The adsorption could be described by Langmuir model and pseudo-second order kinetics model. When the temperature was 45 ℃, the sa-turated adsorption for Cr(Ⅵ) was 428.61 mg/g. The force between PMOS and Cr(Ⅵ) is mainly electrostatic force and coordination force.
Key words:  mesoporous silica    double imine    chromium(Ⅵ) ion    adsorption
出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  O647.3  
基金资助: *国家自然科学基金(21476272;21376280;21546003);广东省科技厅项目(2015A040404044);广东省自然科学基金(2015A030313595; 2015A030313599)
作者简介:  谢慧琳:女,1991年生,硕士研究生,研究方向为功能高分子材料 胡文斌:通讯作者,男,1963年生,博士,教授,主要研究方向为功能高分子材料、纳米材料等 E-mail:wbhu2000@163.com
引用本文:    
谢慧琳, 胡文斌, 龙湘南, 贾振宇, 刘其海, 周新华. 桥连双亚胺介孔材料对Cr(Ⅵ)的吸附性能*[J]. 《材料导报》期刊社, 2017, 31(19): 162-167.
XIE Huilin, HU Wenbin, LONG Xiangnan, JIA Zhenyu, LIU Qihai, ZHOU Xinhua. Adsorption Properties of Double Imine Bridged Mesoporous Silica to Chromium(Ⅵ). Materials Reports, 2017, 31(19): 162-167.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.022  或          https://www.mater-rep.com/CN/Y2017/V31/I19/162
1 Dehghani M H, Sanaei D, Ali I, et al. Removal of chromium(Ⅵ) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies[J]. J Molecular Liquids,2016,215:671.
2 Li Z Y, Hu S. Removal of hexavalent chromium from aqueous solutions by ion-exchange resin[J]. Adv Mater Res,2012,550-553:2333.
3 Park D, Yun Y, Kim J Y, et al. How to study Cr(Ⅵ) biosorption: Use of fermentation waste for detoxifying Cr(Ⅵ) in aqueous solution[J]. Chem Eng J,2008,136(2-3):173.
4 Sanchez J, Rivas B L. Cationic hydrophilic polymers coupled to ultrafiltration membranes to remove chromium(Ⅵ) from aqueous solution[J]. Desalination,2011,279(1):338.
5 Goharshadi E K, Moghaddam M B. Adsorption of hexavalent chromium ions from aqueous solution by graphene nanosheets: Kinetic and thermodynamic studies[J]. Int J Environmental Sci Technol,2015,12(7):2153.
6 Maleki A, Hayati B, Naghizadeh M, et al. Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution[J]. J Ind Eng Chem,2015,28:211.
7 Timin A, Rumyantsev E, Solomonov A. Synthesis and application of amino-modified silicas containing albumin as hemoadsorbents for bilirubin adsorption[J]. J Non-Crystalline Solids,2014,385:81.
8 Ge K, Zhang C, Jia G, et al. Defect-related luminescent mesoporous silica nanoparticles employed for novel detectable nanocarrier[J]. ACS Appl Mater Interfaces,2015,7(20):10905.
9 Chen T, Wang T, et al. Selective adsorption behavior of Cu(Ⅱ) and Cr(Ⅵ) heavy metal ions by functionalized ordered mesoporous carbon[J]. Acta Phys-Chim Sin,2010,26(12):3249(in Chinese).
陈田,王涛,等. 功能化有序介孔碳对重金属离子Cu(Ⅱ)、Cr(Ⅵ)的选择性吸附行为[J]. 物理化学学报,2010,26(12):3249.
10 Munoz B, Ramila A, Perez P J, et al. MCM-41 organic modification as drug delivery rate regulator[J]. Chem Mater,2003,15(2):500.
11 Ozdemir O. Novel symmetric diimine-Schiff bases and asymmetric triimine-Schiff bases as chemosensors for the detection of various metal ions[J]. J Molecular Structure,2016,1125:260.
12 Dobrowolski R, Oszust-Cieniuch M, et al. Amino-functionalized SBA-15 mesoporous silicas as sorbents of platinum (Ⅳ) ions[J]. Colloids Surf A: Physicochem Eng Aspects,2013,435:63.
13 Liu B, Fang M, Jie S, et al. Nickel(Ⅱ) α-diimine catalysts with carboxyl groups for ethylene oligomerization and polymerization[J]. Chin J Polym Sci,2016,34(2):221.
14 Meng X J, Xie B, Xiao F S. Organotemplate-free routes for synthesizing zeolites[J]. Chin J Catal,2009,30(9):965(in Chinese).
孟祥举,谢彬,肖丰收. 无有机模板剂条件下合成沸石催化材料[J]. 催化学报,2009,30(9):965.
15 Liu L, Zhang G Y, Dong J X. Effects of different templating agent on the structure of silica MCM-41 mesoporous molecular sieves[J]. Acta Phys-Chim Sin,2004,20(1):65(in Chinese).
刘雷,张高勇,董晋湘. 模板剂对全硅MCM-41介孔分子筛结构的影响[J]. 物理化学学报,2004,20(1):65.
16 Chandra D, Bhaumik A. Highly active 2D hexagonal mesoporous titanium silicate synthesized using a cationic-anionic mixed-surfactant assembly[J]. Ind Eng Chem Res,2006,45(14):4879.
17 Wang J J, Lu J M, Yang J H, et al. Synthesis of mesoporous MCM-48 molecular sieves with cationic and anionic mixed surfactant system as template[J]. Petrochem Technol,2013,42(5):506(in Chinese).
王静静,鲁金明,杨建华,等. 阴阳离子表面活性剂混合模板剂合成介孔MCM-48分子筛[J]. 石油化工,2013,42(5):506.
18 Verani C N, et al. Exchange coupling in a bis(heterodinuclear) [CuNi]2 and a linear heterotrinuclear complex CoCuNi. Synthesis, structures and properties[J]. Dalton Trans,2000(3):251.
19 Hao S Y, Xiao Q, Zhong Y J, et al. One-pot synthesis of amino-functionalized SBA-15 and their CO2-adsorption properties[J]. Chin J Inorg Chem,2010,26(6):982(in Chinese).
郝仕油,肖强,钟依均,等. 氨基功能化SBA-15的直接合成及其对CO2的吸附性能研究[J]. 无机化学学报,2010,26(6):982.
20 Wang X H, Zhu G R, Gao C J. Adsorption of uranium (Ⅵ) on silica mesoporous material SBA-15 with short channels[J]. CIESC J,2013,64(7):2480(in Chinese).
王兴慧,朱桂茹,高从堦. 短孔道介孔二氧化硅SBA-15对铀的吸附性能[J]. 化工学报,2013,64(7):2480.
21 Shi B. Analysis of existing forms of Cr6+ in waste water[J]. Electroplating Pollution Control,1986,6(4):30(in Chinese).
施波. 废水中六价铬的存在形态分析[J]. 电镀与环保,1986,6(4):30.
22 ManjuladeⅥ M, Manonmani S. Removal of hexavalent chromium ions from aqueous solution by adsorption using activated carbon prepared from cucumis melo peel activated carbon[J]. Oriental J Chem,2015,31(1):531.
23 Yang J, et al. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics[J]. J Ind Eng Chem,2015,21:414.
24 Zhang S J, Xing B L, Huang G X, et al. A study on adsorption of Cr(Ⅵ) by hydrothermal carbon from walnut shell[J]. Chem Ind Eng Prog,2016,35(3):950(in Chinese).
张双杰,邢宝林,黄光许,等. 核桃壳水热炭对六价铬的吸附特性[J]. 化工进展,2016,35(3):950.
25 Zhu W J, Li M M, Ma W H, et al. Synthesis of MCM-41 mesoporous sieves and their adsorption performance of Cu2+[J]. Chin J Environmental Eng,2014,8(2):513(in Chinese).
朱文杰,李明明,马文会,等. MCM-41介孔分子筛的合成及其对铜离子的吸附性能[J]. 环境工程学报,2014,8(2):513.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[3] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[4] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[5] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[6] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[7] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[8] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[9] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[10] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[11] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[12] 陈尚龙, 刘恩岐, 赵节昌, 陈安徽, 刘辉, 苗敬芝. 羧基化柚子皮吸附Cd2+的性能与机制[J]. 材料导报, 2024, 38(20): 23060114-7.
[13] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[14] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[15] 贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed