Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22040187-6    https://doi.org/10.11896/cldb.22040187
  无机非金属及其复合材料 |
Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究
程婷1, 陈晨2,*, 张晓1,3, 温明月2, 王磊2
1 江苏城市职业学院环境生态学院,南京 210017
2 江苏科技大学环境与化学工程学院,江苏 镇江 212100
3 南京大学盐城环保技术与工程研究院,江苏 盐城 224005
Density Functional Theory Research About Adsorption Properties of Formaldehyde Molecule on Mn Doped Zigzag(8,0) Type Single-walled Carbon Nanotubes
CHENG Ting1, CHEN Chen2,*, ZHANG Xiao1,3, WEN Mingyue2, WANG Lei2
1 School of Environmental Ecology, Jiangsu City Vocational College, Nanjing 210017, China
2 School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
3 Nanjing University and Yancheng Academy of Environmental Technology and Engineering, Yancheng 224005, Jiangsu, China
下载:  全 文 ( PDF ) ( 16824KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 甲醛是一种对人体健康造成巨大威胁的污染物。气态甲醛浓度的准确检测对大气空气治理评估和室内环境安全均有重要意义,而高效传感器的研发则是甲醛分子检测技术优化的关键。本研究通过基于第一性原理的DFT计算软件VASP,对甲醛分子在Mn掺杂Zigzag (8,0)型单臂碳纳米管上的吸附特性进行研究。结果表明:Mn掺杂Zigzag (8,0)型单臂碳纳米管是一种稳定的分子构型。区别于在原始CNT上的物理吸附过程,甲醛分子在Mn掺杂CNT上的吸附键长更短,吸附能更大,属于化学吸附过程。同时,甲醛分子在Mn掺杂CNT上的吸附过程还伴随着明显的电荷转移。吸附过程发生后,吸附样品的光吸收曲线在580~705 nm以及365~447 nm的范围内出现明显的蓝移,在307~360 nm的范围内出现了明显的红移。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程婷
陈晨
张晓
温明月
王磊
关键词:  Mn掺杂  碳纳米管  甲醛  吸附    
Abstract: Formaldehyde is a pollutant that poses a great threat to human health. The accurate detection of gaseous formaldehyde concentration is of great significance for atmospheric air treatment evaluation and indoor environmental safety, and the key to the development of efficient for-maldehyde detection technology is the development of molecular sensors. In this work, the adsorption characteristics of formaldehyde molecules on Mn doped Zigzag (8, 0) single-walled carbon nanotubes were studied by using the DFT calculation software VASP based on the first principle. The results revealed that, the Mn doped Zigzag (8, 0) single-walled carbon nanotubes were a stable molecular configuration. Different from the physical adsorption process on the original CNT, the adsorption process of formaldehyde molecules on Mn doped CNT displayed shorter adsorption bond length and greater adsorption energy, which belonged to chemical adsorption process. At the same time, the adsorption process of for-maldehyde molecules on Mn doped CNT was also accompanied by obvious charge transfer. After the adsorption process, the light absorption curve of the adsorbed sample exhibited an obvious blue shift in the range of about 580—705 nm and 365—447 nm, and an obvious red shift in the range of 307—360 nm.
Key words:  Mn doping    carbon nanotubes    formaldehyde    adsorption
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  X131  
基金资助: 镇江市2021年重点研发项目(社会发展 SH2021020); 江苏省大学生创新训练计划项目(202114000015Y)
通讯作者:  *陈晨,江苏科技大学环境与化学工程学院副教授、硕士研究生导师。2005年湘潭大学环境工程专业本科毕业,2011年南京大学博士毕业后到江苏科技大学工作至今,目前主要从事新型环境材料方面的研究工作。chenc@just.edu.cn   
作者简介:  程婷,2005年6月、2008年6月分别于湘潭大学获得工学学士学位和硕士学位。现为江苏城市职业学院高级实验师。目前主要研究领域为新型环境材料。
引用本文:    
程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
CHENG Ting, CHEN Chen, ZHANG Xiao, WEN Mingyue, WANG Lei. Density Functional Theory Research About Adsorption Properties of Formaldehyde Molecule on Mn Doped Zigzag(8,0) Type Single-walled Carbon Nanotubes. Materials Reports, 2024, 38(4): 22040187-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040187  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22040187
1 Khamkeaw A, Phisalaphong M, Jongsomjit B, et al. Journal of Hazar-dous Materials, 2020, 384, 121161.
2 Li S J, Huang H J, Shang L L, et al. Materials Reports, 2021, 35(S2), 75(in Chinese).
李世杰, 黄慧娟, 尚莉莉, 等. 材料导报, 2021, 35(S2), 75.
3 De Falco G, Li W, Cimino S, et al. Carbon, 2018, 138, 283.
4 Huang H J, Li S J, Shang L L, et al. Materials Reports, 2021, 35(24), 24041(in Chinese).
黄慧娟, 李世杰, 尚莉莉, 等. 材料导报, 2021, 35(24), 24041.
5 Shalbafan A, Hassannejad H, Rahmaninia M. International Journal of Adhesion and Adhesives, 2020, 102, 102669.
6 Bellat J P, Bezverkhyy I, Weber G, et al. Journal of Hazardous Mate-rials, 2015, 300, 711.
7 Sun Y, Sun S, Zheng Y, et al. Applied Surface Science, 2021, 570, 151110.
8 Tang J, Deng L, Zhang S, et al. Materials Reports, 2022, 36(2), 18(in Chinese).
谭洁慧, 邓凌峰, 张淑娴, 等. 材料导报, 2022, 36(2), 18.
9 Kupka T, Stachów M, Cheómecka E, et al. Synthetic Metals, 2012, 162(7-8), 573.
10 Rahmanifar E, Yoosefian M, Karimi-Maleh H. Synthetic Metals, 2016, 221, 242.
11 Beheshtian J, Peyghan A A, Bagheri Z. Structural Chemistry, 2012, 24(4), 1331.
12 Li W, Lu X M, Li G Q, et al. Applied Surface Science, 2016, 364, 560.
13 Zhou X, Zhao C, Chen C, et al. Applied Surface Science, 2020, 525, 146595.
14 Hassan A J. Russian Journal of Physical Chemistry A, 2020, 94(8), 1636.
15 Kurban M. Optik, 2018, 172, 295.
16 Yan Q, Sun R M, Wang L P, et al. Journal of Colloid and Interface Science, 2021, 603, 559.
17 Zhang G, Xie W, Chen Y, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25(6), 1502.
18 Zhang T, Sun H, Wang F, et al. Applied Surface Science, 2017, 425(15), 340.
19 López-Corral I, De Celis J, Juan A, et al. International Journal of Hydrogen Energy, 2012, 37(13), 10156.
20 Girao E C, Fagan S B, Zanella I, et al. Journal of Hazardous Materials, 2010, 184(1-3), 678.
21 Kresse G G, Furthmüller J J. Physical Review B: Condensed Matter, 1996, 54, 11169.
22 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865.
23 Perdew J P, Chevary J A, Vosko S H, et al. Physical Review B: Condensed Matter, 1992, 46(11), 6671.
24 Nityananda R, Hohenberg P, Kohn W. Resonance, 2017, 22(8), 809.
25 Kohn W, Sham L. Physical Review, 1965, 140(4A), 1133.
26 Santos E, Ayuela A, Sánchez-Portal D. New Journal of Physics, 2010, 12(5), 053012.
27 Baei M T, Soltani A, Hashemian S, et al. Canadian Journal of Chemistry, 2014, 92(7), 605.
28 Shakerzadeh E, Khodayar E, Noorizadeh S. Computational Materials Science, 2016, 118, 155.
29 Beheshtian J, Peyghan A A, Bagheri Z. Sensors Actuators B Chemical, 2012, 171-172, 846.
30 Wang R, Zhu R, Zhang D. Chemical Physics Letters, 2008, 467(1-3), 131.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[3] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[4] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[5] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[6] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[7] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[8] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[9] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[10] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[11] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[12] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[13] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[14] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[15] 陈尚龙, 刘恩岐, 赵节昌, 陈安徽, 刘辉, 苗敬芝. 羧基化柚子皮吸附Cd2+的性能与机制[J]. 材料导报, 2024, 38(20): 23060114-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed