Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22040208-6    https://doi.org/10.11896/cldb.22040208
  无机非金属及其复合材料 |
维生素B12改性纳米零价镍去除溶液中U(Ⅵ)的机理
付晓辉1, 李冠超2, 王昱莹1, 李小燕1,*, 黄希1, 刘小亮1, 胡伟芳1
1 东华理工大学核资源与环境国家重点实验室,南昌 330013
2 广东省核工业地质局辐射环境监测中心,广州 510800
Removal Mechanism of U(Ⅵ) from Solution by VB12 Modified Nano Zero-valent Nickel
FU Xiaohui1, LI Guanchao2, WANG Yuying1, LI Xiaoyan1,*, HUANG Xi1, LIU Xiaoliang1, HU Weifang1
1 State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
2 Radiation Environment Monitoring Center of Guangdong Geological Bureau of Nuclear Industry, Guangzhou 510800, China
下载:  全 文 ( PDF ) ( 9200KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用液相还原法制备了维生素B12改性的纳米零价镍(VB12@nZVNi),运用SEM-EDS、Zeta、XPS对材料进行表征,研究其形貌特征,并对VB12@nZVNi去除U(Ⅵ)的机理进行等温吸附、动力学与热力学研究。动力学研究结果表明,VB12@nZVNi对U(Ⅵ)的去除包括吸附和还原两种方式,其吸附过程很好地符合准二级吸附动力学模型和Langmuir等温吸附模型,理论最大吸附容量高达670.6 mg/g。热力学研究结果表明,该反应是自发进行的吸热反应,吸附过程是物理吸附与化学吸附并存,为表面单层吸附且离子间没有相互作用。还原反应符合准一级还原动力学模型,维生素B12中的Co可促进Ni0对U(Ⅵ)的还原。VB12@nZVNi材料的合成方法简便、环境友好、去除效果好,在含U(Ⅵ)废水处理中具有较好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付晓辉
李冠超
王昱莹
李小燕
黄希
刘小亮
胡伟芳
关键词:  纳米零价镍  维生素B12    机理    
Abstract: Vitamin B12-modified nano zero-valent nickel (VB12@nZVNi) was prepared by liquid phase reduction method. The morphology of VB12@nZVNi was characterized by SEM-EDS, Zeta, and XPS. The removal mechanism of U(Ⅵ) by VB12@nZVNi was studied with isotherm adsorption, kinetic fitting and thermodynamics. The kinetic study results showed that the removal of U(Ⅵ) by VB12@nZVNi included adsorption and reduction, the adsorption process was in good agreement with the pseudo-second-order adsorption kinetic model and the Langmuir isotherm adsorption model, and the theoretical maximum adsorption capacity reached 670.6 mg/g. The results of thermodynamic study showed that the reaction was a spontaneous endothermic reaction, and the adsorption process was a coexistence of physical adsorption and chemical adsorption, which was a single-layer adsorption on the surface and there was no interaction between ions. The reduction reaction conformed to the pseudo-first-order reduction kinetics model and Co in vitamin B12 could promote the reduction of U(Ⅵ) by Ni0. VB12@nZVNi has good application prospects in the treatment of U(Ⅵ)-containing wastewater due to its facile synthesis, environmental friendliness and good removal effect.
Key words:  nano-zero-valent nickel    vitamin B12    U(Ⅵ)    mechanism
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  X591  
基金资助: 国家自然科学基金(11465002;41760190)
通讯作者:  *李小燕,东华理工大学核科学与工程学院教授,博士研究生导师。2001年毕业于华东地质学院环境工程专业,获学士学位;2007年毕业于东华理工大学环境工程专业,获硕士学位;2013年毕业于中国原子能科学研究院辐射防护及环境保护专业,获博士学位。研究方向为功能材料合成及放射性核素分离和光催化,先后主持国家自然科学基金项目3项,江西省自然科学基金重点项目1项,江西省教改重点项目1项,参与国家级科研项目5项,发表学术论文50余篇,出版学术专著1部。372040739@qq.com   
作者简介:  付晓辉,2020年6月于三峡大学获得工学学士学位。现为东华理工大学核科学与工程学院硕士研究生,在李小燕教授的指导下进行研究。目前主要研究领域为辐射防护及环境保护。
引用本文:    
付晓辉, 李冠超, 王昱莹, 李小燕, 黄希, 刘小亮, 胡伟芳. 维生素B12改性纳米零价镍去除溶液中U(Ⅵ)的机理[J]. 材料导报, 2024, 38(4): 22040208-6.
FU Xiaohui, LI Guanchao, WANG Yuying, LI Xiaoyan, HUANG Xi, LIU Xiaoliang, HU Weifang. Removal Mechanism of U(Ⅵ) from Solution by VB12 Modified Nano Zero-valent Nickel. Materials Reports, 2024, 38(4): 22040208-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040208  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22040208
1 Nathaniel S P, Alam M, Murshed M, et al. Environmental Science and Pollution Research, 2021, 28(35), 47957.
2 Li B, Haneklaus N. Energy Reports, 2022, 8, 1090.
3 Coyte R M, Jain R C, Srivastava S K, et al. Environmental Science & Technology Letters, 2018, 5(6), 341.
4 Zhang L, Li X, Wang G, et al. American Mineralogist, 2020, 105(10), 1556.
5 Bjørklund G, Christophersen O A, Chirumbolo S, et al. Environmental Research, 2017, 156, 526.
6 Dinis M D L, Fiúza A. Geosciences, 2021, 11(6), 250.
7 Tarekegn M M, Hiruy A M, Dekebo A H J R A. RSC Advances, 2021, 11(30), 18539.
8 Xu H, Gao M, Hu X, et al. Journal of Hazardous Materials, 416, 125924.
9 Ileri B, Dogu I. Journal of Environmental Management, 2022, 303, 114200.
10 Wang Y, Li G C, Li X Y, et al. Nonferrous Metal(Extractive Metallurgy), 2021(6), 115(in Chinese).
王杨, 李冠超, 李小燕, 等. 有色金属(冶炼部分), 2021(6), 115.
11 Suazo-Hernández J, Manquián-Cerda K, De La Luz Mora M, et al. Journal of Hazardous Materials, 2021, 403, 123639.
12 Chen Y, Sang W, Chen R, et al. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324(1), 367.
13 Negroni A, Zanaroli G, Vignola M, et al. Environmental Engineering & Management Journal, 2012, 11(10), 1733.
14 Wang Y, Gong Y, Lin N, et al. Journal of Colloid and Interface Science, 2022, 347, 118355.
15 Sang L, Wang G, Liu L, et al. Chemosphere, 2021, 276, 130139.
16 Fu X H, Wang Y Y, He D W, et al. Nonferrous Metal(Extractive Metallurgy), 2021(10), 90(in Chinese).
付晓辉, 王昱莹, 何登武, 等. 有色金属(冶炼部分), 2021(10), 90.
17 Fan G, Xu W, Li J, et al. Advanced Materials, 2021, 33(42), 2101126.
18 Liu X, Ni K, Niu C, et al. ACS Catalysis, 2019, 9(3), 2275.
19 Shi H, Zha Q, Ni Y. Journal of Alloys and Compounds, 2022, 904, 164052.
20 Peng L, Shang Y, Gao B, et al. Applied Catalysis B, Environmental, 2021, 282, 119484.
21 Wei Z, Wang J, Mao S, et al. Acs Catalysis, 2015, 5(8), 4783.
22 Liu R, Wang H, Han L, et al. Environmental Science and Pollution Research, 2021, 28(39), 55176
23 Qiu M, Liu Z, Wang S, et al. Environmental Research, 2021, 196, 110349.
24 Zhang Q, Wang Y, Wang Z, et al. Journal of Alloys and Compounds, 2021, 852, 156993.
[1] 白鹏飞, 杨聪仁, 马昆林, 丁亚蓉, 詹启贤, 孟庆胤, 陈荣健, 范佳志. 助磨剂影响矿物浮选的作用机理及研究进展[J]. 材料导报, 2025, 39(3): 24010120-7.
[2] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[3] 陈芳, 冯奕程, 吴佳育, 关博文, 房建宏, 温小栋, 李超恩. 市政污泥陶粒制备及资源化利用研究进展[J]. 材料导报, 2025, 39(3): 23120099-9.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[6] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[7] 初红涛, 刘晓函, 赵明, 高立娣, 秦世丽, 韩爽, 王军. 铜纳米簇基荧光探针的合成及应用研究进展[J]. 材料导报, 2025, 39(2): 23110149-10.
[8] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[9] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[10] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[11] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[12] 肖嵩, 刘明, 张小龙, 黄艳斐, 王海斗. 等离子喷涂熔滴铺展凝固行为研究现状[J]. 材料导报, 2024, 38(6): 22080031-12.
[13] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[14] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[15] 渠亚男, 谢永江, 仲新华, 杨金龙. 利用空心微球制备超轻泡沫玻璃及其性能研究[J]. 材料导报, 2024, 38(4): 22090062-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed