Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22090062-5    https://doi.org/10.11896/cldb.22090062
  无机非金属及其复合材料 |
利用空心微球制备超轻泡沫玻璃及其性能研究
渠亚男1,*, 谢永江1, 仲新华1, 杨金龙2
1 中国铁道科学研究院集团有限公司铁道建筑研究所,北京 100081
2 清华大学材料学院,新型陶瓷与精细工艺国家重点实验室,北京 100084
Preparation and Properties of Ultralight Glass Foams from Hollow Microspheres
QU Yanan1,*, XIE Yongjiang1, ZHONG Xinhua1, YANG Jinlong2
1 Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
2 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 15596KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了一种利用空心微球制备超轻泡沫玻璃的新方法,以废玻璃粉为主要原材料制备高气孔率的空心微球,研究了空心微球的发泡过程和发泡机理,利用空心微球发泡法制备出了超轻质泡沫玻璃。结果表明:空心微球气孔率高,发泡过程可控,可以制备气孔尺寸均匀、高气孔率的泡沫玻璃。随着玻璃粉粒径的减小,空心微球的体积膨胀率逐渐增加,当玻璃粉D50为4.3 μm时,空心微球的最大体积膨胀率约为280%。随着烧结温度的升高,泡沫玻璃的容重降低,气孔率增加,泡沫玻璃中析晶增多,主要晶相包括SiO2(石英)、SiO2(鳞石英)和Na2Ca3Si6O16(失透石)。当烧结温度为725~800 ℃时,可以制备气孔率大于95%的超轻泡沫玻璃。本工作提出的空心微球发泡法对制备无机多孔材料具有较为广泛的适用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
渠亚男
谢永江
仲新华
杨金龙
关键词:  空心微球  超轻泡沫玻璃  发泡过程  发泡机理  高气孔率    
Abstract: A new preparation method of ultralight glass foams from hollow microspheres was investigated in this work. High-porosity hollow microspheres were prepared using waste glass powder as the main raw material, and the foaming process and foaming mechanism of the hollow microspheres were investigated. The ultralight glass foams were successfully prepared by the hollow microspheres foaming method. The results show that the hollow microspheres with high porosity and controllable foaming process can be used to prepare glass foams with uniform pore size and high porosity. With the decreasing of the glass powder particle size, the volume expansion ratio of the hollow microspheres gradually increases. The maximum volume expansion ratio of the hollow microspheres is about 280% when the D50 of the glass powder is 4.3 μm. With the increasing of the sintering temperature, the bulk density of the glass foams decrease, the porosity and the crystal percentage of the glass foams increase. The main crystalline phases are quartz(SiO2), tridymite(SiO2) and devitrite (Na2Ca3Si6O16). The ultralight glass foams with porosity greater than 95% are prepared at the sintering temperature of 725~800 ℃. The hollow microspheres foaming method presented in this work is widely applicable to the preparation of inorganic porous materials.
Key words:  hollow microspheres    ultralight glass foam    foaming process    foaming mechanism    high porosity
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TU55+1.3  
基金资助: 国家自然科学基金(51908551)
通讯作者:  *渠亚男,2016年6月毕业于清华大学,获得博士学位。现为中国铁道科学研究院集团有限公司副研究员,主要研究领域为建筑材料。已发表学术论文30余篇,获10余项发明专利授权。quyanan2016@163.com   
引用本文:    
渠亚男, 谢永江, 仲新华, 杨金龙. 利用空心微球制备超轻泡沫玻璃及其性能研究[J]. 材料导报, 2024, 38(4): 22090062-5.
QU Yanan, XIE Yongjiang, ZHONG Xinhua, YANG Jinlong. Preparation and Properties of Ultralight Glass Foams from Hollow Microspheres. Materials Reports, 2024, 38(4): 22090062-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090062  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22090062
1 Cochran J K. Current Opinion in Solid State and Materials Science, 1998, 3(5), 474.
2 Hu J, Chen M, Fang X, et al. Chemical Society Reviews, 2011, 40(11), 5472.
3 Luo Y, Liu Q, Wang Y X, et al. Journal of Functional Materials, 2023, 54(6), 6011(in Chinese).
罗渊, 刘强, 王源鑫, 等. 功能材料, 2023, 54(6), 6011.
4 Zhang S. Materials Reports, 2020, 34(S2), 1091(in Chinese).
张硕. 材料导报, 2020, 34(S2), 1091.
5 Sanders W S, Gibson L J. Materials Science & Engineering: A, 2003, 347(1-2), 70.
6 Shao Y, Jia D, Zhou Y, et al. Journal of the American Ceramic Society, 2008, 91(11), 3781.
7 Wu J M, Zhang X Y, Yang J L. Journal of the European Ceramic Society, 2014, 34(5), 1089.
8 Jang D H, Kim Y W, Song I H, et al. Journal of the American Ceramic Society, 2006, 89(10), 3262.
9 Thijs I, Luyten J, Mullens S. Journal of the American Ceramic Society, 2004, 87(1), 170.
10 Qi F, Xu X, Xu J, et al. Journal of the American Ceramic Society, 2014, 97(10), 3341.
11 Green D J. Journal of the American Ceramic Society, 1985, 68(7), 403.
12 Qu Y N, Xie Y J, Zhong X H, et al. Materials Reports, 2023, 37(1), 62(in Chinese).
渠亚男, 谢永江, 仲新华, 等. 材料导报, 2023, 37(1), 62.
13 Scheffler M, Colombo P. Cellular ceramics: structure, manufacturing, properties and applications, Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2005.
14 Guo H W, Gao D N, Mo Z X. Production technology of glass foam, Chemical Industry Press, China, 2014, pp.3(in Chinese).
郭宏伟, 高档妮, 莫祖学. 泡沫玻璃生产技术, 化学工业出版社, 2014, pp.3.
15 Qu Y N, Su Z G, Xu J, et al. Materials Letters, 2016, 166, 35.
16 Yang J L, Xi X Q, Huang Y. Ceramic microspheres, Tsinghua University Press, China, 2017, pp.195(in Chinese).
杨金龙, 席小庆, 黄勇. 陶瓷微珠, 清华大学出版社, 2017, pp.195.
17 Qu Y N, Xu J, Su Z G, et al. Ceramics International, 2016, 42(2), 2370.
[1] 张硕. 利用纳米碳酸钙为模板制备二氧化硅空心微球[J]. 材料导报, 2020, 34(Z2): 91-94.
[2] 孙肖坤, 孙孟勇, 刘小冲, 赵娟. 冷冻干燥法制备高气孔率、低介电的Si3N4陶瓷[J]. 材料导报, 2020, 34(4): 4025-4031.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed