Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23060114-7    https://doi.org/10.11896/cldb.23060114
  高分子与聚合物基复合材料 |
羧基化柚子皮吸附Cd2+的性能与机制
陈尚龙1,2,*, 刘恩岐1,2, 赵节昌2, 陈安徽1,2, 刘辉1,2, 苗敬芝1,2
1 徐州工程学院食品与生物工程学院,江苏 徐州 221018
2 徐州工程学院江苏省食品资源开发与质量安全重点建设实验室,江苏 徐州 221018
Adsorption Properties and Mechanism of Cd2+ on Carboxylated Pomelo Peel
CHEN Shanglong1,2,*, LIU Enqi1,2, ZHAO Jiechang2, CHEN Anhui1,2, LIU Hui1,2, MIAO Jingzhi1,2
1 College of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, Jiangsu, China
2 Jiangsu Key Laboratory of Food Resources Development and Quality Safe, Xuzhou University of Technology, Xuzhou 221018, Jiangsu, China
下载:  全 文 ( PDF ) ( 2641KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探索利用食品加工废弃物柚子皮制备一种重金属离子吸附材料的可行性,通过NaOH将柚子皮中甲酯化的羧基水解成羧酸,再利用TEMPO/次氯酸钠/溴化钠体系将柚子皮中C-6位伯羟基氧化成羧酸,制备出一种羧基化柚子皮吸附材料,同时采用FTIR、SEM-EDS和XPS对柚子皮和吸附Cd2+前后的羧基化柚子皮进行表征,研究其吸附机制。结果表明羧基化柚子皮中羧基含量为2.34 mmol/g,是改性前的10.64倍,且可以有效地去除水溶液中Cd2+。羧基化柚子皮吸附Cd2+更符合Langmuir和伪二阶动力学模型,属于单层化学吸附,对Cd2+的最大吸附量为76.16 mg/g,是改性前的5.81倍。羧基化柚子皮中羧基(-COO-)是吸附Cd2+的功能性基团,吸附后形成羧酸镉,其中镉以Cd2+的形式存在,与-COO-的配位方式主要是双齿桥式,该吸附过程是一个阳离子(Na+和Cd2+)交换的过程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈尚龙
刘恩岐
赵节昌
陈安徽
刘辉
苗敬芝
关键词:  羧基  柚子皮  Cd2+  吸附性能  吸附机制    
Abstract: In order to explore the feasibility of preparing a heavy metal ions adsorption material with food processing waste pomelo peel as raw material, the methyl carboxyl groups in pomelo peel were hydrolyzed into carboxylic acids by NaOH. The C-6 primary hydroxyl groups in pomelo peel were oxidized to carboxylic acids by TEMPO/sodium hypochlorite/sodium bromide system. A carboxylated pomelo peel adsorbent was prepared. FTIR, SEM-EDS and XPS were used to characterize the pomelo peel and the carboxylated pomelo peel before and after adsorption of Cd2+ for elucidating the mechanism of its influence. The results show that the carboxyl content in the carboxylated pomelo peel is 2.34 mmol/g, which is 10.64 times greater compared with that before modification. The carboxylated pomelo peel can effectively remove Cd2+ from aqueous solution. The adsorption of Cd2+ using the carboxylated pomelo peel is more in line with Langmuir model and pseudo-second-order model, belong to single-layer and chemical adsorption. The maximum adsorption capacity of the carboxylated pomelo peel for Cd2+ is 76.16 mg/g and 5.81 times that before modification. It could be proved that the carboxyl groups (-COO-) contained in the carboxylated pomelo peel are functional groups, which adsorb Cd2+ in the solution and form carboxylic acid cadmium. They (-COO-) are acting as a bidentate chelate coordinate to Cd2+. The process of adsorption of Cd2+ using the carboxylated pomelo peel is an exchange process of cations (Na+ and Cd2+).
Key words:  carboxyl group    pomelo peel    Cd2+    adsorption property    adsorption mechanism
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  X712  
  X52  
基金资助: 江苏省产学研合作项目(BY20221265)
通讯作者:  * 陈尚龙,徐州工程学院食品科学与工程学院高级实验师。2006年徐州工程学院食品科学与工程专业本科毕业,2010年中国矿业大学矿物加工工程专业硕士毕业后到徐州工程学院工作至今,2020年中国矿业大学化学工艺专业博士毕业。目前主要从事固体废弃物资源化利用等方面的研究工作。发表论文30余篇,其中SCI、EI论文7篇,获得发明专利9件。slchen1982@163.com   
引用本文:    
陈尚龙, 刘恩岐, 赵节昌, 陈安徽, 刘辉, 苗敬芝. 羧基化柚子皮吸附Cd2+的性能与机制[J]. 材料导报, 2024, 38(20): 23060114-7.
CHEN Shanglong, LIU Enqi, ZHAO Jiechang, CHEN Anhui, LIU Hui, MIAO Jingzhi. Adsorption Properties and Mechanism of Cd2+ on Carboxylated Pomelo Peel. Materials Reports, 2024, 38(20): 23060114-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060114  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23060114
1 Dinh V P, Xuan T D, Hung N Q, et al. Environmental Science and Pollution Research, 2021, 28(45), 63504.
2 Huang Z, Xiong C, Zhao M, et al. Advanced Powder Technology, 2021, 32(4), 1013.
3 Chen Y, Liu Y, Li Y, et al. Water Air and Soil Pollution, 2020, 231(8), 404.
4 Sun Y, Zhao L, Lian H, et al. Analytica Chimica Acta, 2020, 1137, 85.
5 Qin J, Su Z, Mao Y, et al. Ecotoxicology and Environmental Safety, 2021, 208, 111729.
6 Zhong Y, Gao X, Zhang W, et al. Bioresources, 2022, 17(1), 1373.
7 Ye W, Yokota S, Fan Y, et al. Cellulose, 2021, 28(4), 2167.
8 Karim Z, Hakalahti M, Tammelin T, et al. RSC Advances, 2017, 7(9), 5232.
9 Liu Y, Gao Q, Pu S, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 391.
10 Liu P, Garrido B, Oksman K, et al. RSC Advances, 2016, 6(109), 107759.
11 Jiang J, Chen H, Liu L, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(37), 14198.
12 Hu H W, Ji H, Pu J L, et al. Bioresources, 2020, 15(1): 444.
13 Ye W, Liu L, Wang Z, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(24), 19463.
14 Inamochi T, Funahashi R, Nakamura Y, et al. Cellulose, 2017, 24(9), 4097.
15 Chen H, Zhong H H, Wang L F. Journal of Food Science and Technology, 2022, 40(4), 35 (in Chinese).
陈欢, 钟洪浩, 王鲁峰. 食品科学技术学报, 2022, 10(4), 35.
16 Wu B, Shao F N, He W, et al. Acta Materiae Compositae Sinica, 2019, 36(9), 2212 (in Chinese).
吴波, 邵发宁, 何文, 等. 复合材料学报, 2019, 36(9), 2212.
17 Li X Y, Wang H Z. Materials Reports, 2018, 32(5), 1598 (in Chinese).
李雪云, 王合中. 材料导报, 2018, 32(5), 1598.
18 Zhang L, Liu X, Huang X, et al. Environmental Technology, 2019, 40, 1853.
19 Qiao H T, Li H L, Zhao B W, et al. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(12), 199 (in Chinese).
乔洪涛, 李海龙, 赵保卫, 等. 农业工程学报, 2021, 37(12), 199.
20 Chen R, Wei T, Liu C, et al. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(24), 188 (in Chinese).
陈榕, 魏彤, 刘畅, 等. 农业工程学报, 2022, 38(24), 188.
21 Gülen J, Zorbay F. Water Environment Research, 2017, 89, 805.
22 Ahmed M J, Theydan S K. Chemical Engineering Journal, 2013, 214, 310.
23 Takdastan A, Samarbaf S, Tahmasebi Y, et al. Journal of Industrial and Engineering Chemistry, 2019, 78, 352.
24 Yu K, Liu J X, Xie S B, et al. Materials Reports, 2020, 34(12), 23020 (in Chinese).
俞坤, 刘金香, 谢水波, 等. 材料导报, 2020, 34(12), 23020.
25 Wang Y, Wang F, Shu L, et al. Water Air & Soil Pollution, 2023, 234, 131.
26 Villen-Guzman M, Cerrillo-Gonzalez M M, Paz-Garcia J M, et al. Environmental Technology & Innovation, 2021, 21, 101380.
27 Ozdes D, Duran C. Environmental Monitoring and Assessment, 2021, 193, 642.
28 Foroutan R, Peighambardoust S J, Mohammadi R, et al. Environmental Research, 2022, 211, 113020.
29 Wang F, Wu P, Shu L, et al. Environmental Science and Pollution Research, 2022, 29(17), 25748.
30 Sun H, Wang X, Wang R, et al. Water Science and Technology, 2019, 80(6), 1205.
31 Wang F, Wu P, Shu L, et al. Environmental Science and Pollution Research International, 2022, 29(2), 3051.
32 Xiang G, Long S, Liu H, et al. Materials Research Express, 2021, 8, 115508.
33 Saravanan A, Kumar P S, Vo D, et al. Chemosphere, 2021, 271, 129484.
34 Zhang L, Ren Y, Xue Y, et al. RSC Advances, 2020, 10, 35878.
35 Xie X, Zhao Y, Qiu P, et al. Fuel, 2018, 216, 521.
36 Bala K, Singh B. Asian Journal of Chemistry, 2017, 29(2), 336.
37 Papageorgiou S K, Kouvelos E P, Favvas E P, et al. Carbohydrate Research, 2010, 345(4), 469.
38 Chen S L, Tang S R. Acta Materiae Compositae Sinica, 2021, 38(6), 1939 (in Chinese).
陈尚龙, 唐仕荣. 复合材料学报, 2021, 38(6), 1939.
39 Wu Q, He H, Zhou H, et al. Carbohydrate Polymers, 2020, 233, 115860.
40 Zhang C, Li X, Jiang Z, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(11), 15644.
[1] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[2] 裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
[3] 聂若楠, 王旺民, 曹丽娟, 徐慧敏, 储刚, 秦文秀, 王振, 司友斌. 关于生物炭的四重功能化改性及其吸附环境污染物机制的综述[J]. 材料导报, 2023, 37(22): 22050019-9.
[4] 潘阳, 汪源, 汪苏平, 胡志豪, 李正平, 张满, 张云. 高保坍型聚羧酸减水剂的制备及其在水溶液中的自组装行为[J]. 材料导报, 2021, 35(z2): 167-171.
[5] 黄金花, 焦志伟, 陈先义, 赵小波, 姚英邦, 陶涛, 梁波, 鲁圣国. 黄豆的多孔结构及对亚甲基蓝染料的去除性能研究[J]. 材料导报, 2021, 35(z2): 520-524.
[6] 秦媛, 王文彬, 刘加平. 淀粉基水化温升抑制剂对水泥-粉煤灰复合胶凝材料水化的影响[J]. 材料导报, 2021, 35(16): 16065-16069.
[7] 胡汉娇, 梁兴唐, 汪双双, 张霞, 尹艳镇, 尹雪斌. 羧甲基壳聚糖-羧基葡聚糖凝聚微滴的制备及其酵母细胞毒性[J]. 材料导报, 2020, 34(Z2): 496-500.
[8] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[9] 李雪岩, 常云飞, 廖明义. 氮丙啶固化端羧基液体氟橡胶的性能研究[J]. 材料导报, 2020, 34(20): 20177-20181.
[10] 卿艳红, 苏小丽, 王钺博, 周琴, 文科, 马灵涯, 陈情泽, 朱建喜. 蒙脱石黏土矿物环境材料构建的研究进展[J]. 材料导报, 2020, 34(19): 19018-19026.
[11] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[12] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[13] 张理元, 由耀辉, 刘义武, 阮尚全. 无机沉淀胶溶法制备钛锂离子筛及其吸附性能研究[J]. 材料导报, 2019, 33(24): 4056-4061.
[14] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[15] 程 波,向真才,郭 恒,熊云威. 煤岩材料对瓦斯吸附性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1513-1518.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed