Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19018-19026    https://doi.org/10.11896/cldb.19100243
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
蒙脱石黏土矿物环境材料构建的研究进展
卿艳红1, 苏小丽2, 王钺博3, 周琴4, 文科5, 马灵涯5, 陈情泽5, 朱建喜5
1 湖南省环境保护科学研究院/湖南省环科院科技咨询有限责任公司,长沙 410004
2 景德镇陶瓷大学材料科学与工程学院,景德镇 333001
3 天津大学表层地球系统科学研究院,天津 300072
4 清华大学水质与水生态研究中心,北京 100084
5 中国科学院广州地球化学研究所,中国科学院矿物学与成矿学重点实验室,广州 510640
Research Progress in Construction of Montmorillonite
Environmental Mineral Materials
QING Yanhong1, SU Xiaoli2, WANG Yuebo3, ZHOU Qin4, WEN Ke5, MA Lingya5, CHEN Qingze5, ZHU Jianxi5
1 Hunan Research Academy of Environmental Sciences/Hunan Research Academy of Environmental Sciences-Technology Consulting Co., Ltd.,Changsha 410004, China
2 School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
3 Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
4 Center for Water and Ecology, Tsinghua University, Beijing 100084, China
5 CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 6219KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 蒙脱石是一种黏土矿物,具有纳微米级粒径、大比表面积、特殊的纳米层间域、层间离子可交换性等物化性质,且分布广泛、储量丰富、价格低廉,可作为一种良好的环境材料用于对污水中各类污染物的吸附去除。蒙脱石对重金属、放射性核素,以及磷酸根等离子有较好的吸附能力。由于其表面极强的亲水性,蒙脱石矿物对弱极性和非极性有机污染物的吸附性能较差,限制了其应用范围。大量研究者选取适当的表面活性剂、硅烷偶联剂,通过插层、嫁接及柱撑等表面改性和结构改型处理,不仅大大提高其对无机离子的吸附能力,还可将蒙脱石亲水性表面变为疏水亲油表面,改变其表面张力与接触角,极大提升其对有机污染物的吸附性能。目前,对蒙脱石黏土矿物表面反应性的研究(包括黏土矿物的表面改性、层间域改造)已引起广泛关注,研究者通过不断寻求新技术、新方法,以扩展蒙脱石环境材料应用的广度和深度。利用离子交换、插层、柱撑、层间聚合等各种处理方法,把其他离子或化合物引入蒙脱石层间域,对其进行结构与表面性质的调控,使其表-界面物理化学性质发生相应的变化,制得具有不同功能性质的新型材料,可作为污染物的吸附剂、催化剂、混凝剂等广泛应用于环境污染修复领域。本文综述了近年来一些主要的蒙脱石矿物环境材料的构建方法及进展,探讨其微观结构对吸附性能的影响,阐述黏土矿物结构与吸附性能之间的构效关系,为开发新型高效环保的黏土矿物环境材料提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卿艳红
苏小丽
王钺博
周琴
文科
马灵涯
陈情泽
朱建喜
关键词:  黏土矿物  构建方法  微观结构  吸附性能  构效关系    
Abstract: Montmorillonite (Mnt) is a clay mineral with excellent physical and chemical properties such as nano-micron particle size, large specific surface area, special nano-layer interlayer space, and exchangeability of cations in the interlayer. It is widely distributed, abundant in reserves and low in price. Mnt is thus a good environmental material that can be used for the adsorption and removal of various pollutants in the sewage. Such as heavy metals, radionuclides, and phosphate ions, Mnt has good adsorption capacity for them. However, Mnt has poor adsorption pro-perties for weakly polar and non-polar organic pollutants due to its extremely strong hydrophilic nature, which limits its application range. A large number of researchers modified the surface properties of Mnt by intercalating, grafting and/or pillaring Mnt using suitable surfactants, silane coupling agents. These treatments not only greatly improved the adsorption capacity of Mnt for inorganic ions, but also converted its hydrophilic surface into a hydrophobic surface and changed the surface tension and contact angle. Therefore, surface modification of Mnt greatly improving its adsorption performance for organic pollutants. At present, the studies on the surface reactivity of Mnt, including surface and interlayer modification, have attracted wide attention. Researchers are continually creating new technologies and methods to expand the breadth and depth of the Mnt environmental material application. Cation exchange, intercalation, pillaring, interlayer polymerization and other treatments are used to introduce other ions or compounds into the Mnt interlayer. The modification of the structure and surface properties of Mnt change the surface and interface physical and chemical properties accordingly. The prepared new materials with different functional properties can be widely used in the field of environmental pollution repair as adsorbents, catalysts and coagulants for pollutants. This paper reviews the construction methods and progress of some major Mnt environmental mineral materials in recent years. We aim to discuss the effect of microstructure on adsorption performance, and to describe the structure-activity relationship between clay mineral structure and its adsorption performance with the hope of providing reference for the development of new and efficient environmentally friendly clay mineral environmental materials.
Key words:  clay mineral    construction methods    microstructure    adsorption performance    structure-activity relationship
                    发布日期:  2020-11-05
ZTFLH:  X703  
基金资助: 广州市科学研究计划重点项目(201804020037);广东省科技创新领军人才(2019TX05L169);中国科学院创新交叉团队项目(JCTD-2019-15);中国科学院青年创新促进会(2018387;2020347)
通讯作者:  zhujx@gig.ac.cn   
作者简介:  卿艳红,2011年6月毕业于中科院广州地球化学研究所,获得理学硕士学位。现在湖南省环境保护科学研究院工作,目前主要研究方向为水污染防治。
朱建喜,中国科学院广州地球化学研究所研究员,2003年毕业于中国科学院大学,获矿物学博士学位。主要研究领域包括矿物表界面物理化学和风化壳离子吸附型稀土矿。
引用本文:    
卿艳红, 苏小丽, 王钺博, 周琴, 文科, 马灵涯, 陈情泽, 朱建喜. 蒙脱石黏土矿物环境材料构建的研究进展[J]. 材料导报, 2020, 34(19): 19018-19026.
QING Yanhong, SU Xiaoli, WANG Yuebo, ZHOU Qin, WEN Ke, MA Lingya, CHEN Qingze, ZHU Jianxi. Research Progress in Construction of Montmorillonite
Environmental Mineral Materials. Materials Reports, 2020, 34(19): 19018-19026.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100243  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19018
1 Brigatti M F, Galán E, Theng B K G, et al. Developments in clay science, Elsevier, NLD,2013.
2 Liao P F, Wu P X, Wu W M, et al. Bulletin of Mineralogy, Petrology and Geochemistry,2009,28(3),272(in Chinese)
廖平凡,吴平霄,吴伟民,等.矿物岩石地球化学通报,2009,28(3),272.
3 Wu P X. Clay mineral materials and environmental remediation, Chemical Industry Press, China,2004(in Chinese).
吴平霄.黏土矿物材料与环境修复,化学工业出版社,2004.
4 Wu P X, Ye D Q, Ming C B. Bulletin of Mineralogy Petrology and Geochemistry,2002(4),228(in Chinese).
吴平霄,叶代启,明彩兵.矿物岩石地球化学通报,2002(4),228.
5 Zhu R L, Zeng C, Zhou Q, et al. Bulletin of Mineralogy, Petrology and Geochemistry,2017,36(5),697(in Chinese).
朱润良,曾淳,周青,等.矿物岩石地球化学通报,2017,36(5),697.
6 Kim Y S, Song D I, Jeon Y W, et al. Separation Science and Technology,1996,31(20),2815.
7 Puranik R V, Kumar P, Bhat Y S, et al. Journal of Porous Materials,2010,17(4),485.
8 Wang T, Zhu J X, Zhu R L, et al. Journal of Hazardous Materials,2010,178(1-3),1078.
9 Zhu L Z, Chen B L, Shen X Y. Environmental Science & Technology,2000,34(3),468.
10 Zhu L Z, Ren X G, Yu S B. Environmental Science & Technology,1998,32(21),3374.
11 Zhu R L, Chen Q Z, Zhou Q, et al. Applied Clay Science,2016,123,239.
12 Ahmad I, Hussain M, Seo K S, et al. Journal of Applied Polymer Science,2010,116(1),314.
13 Meneghetti P, Qutubuddin S. Langmuir,2004,20(8),3424.
14 Meneghetti P, Qutubuddin S. Thermochimica Acta,2006,442(1-2),74.
15 Park S J, Seo D I, Lee J R. Journal of Colloid and Interface Science,2002,251(1),160.
16 Yuan G D, Theng B K G, Churchman G J, et al. Chapter 5.1-Clays and Clay Minerals for Pollution Control.//Bergaya F, Lagaly G. Developments in Clay Science, Elsevier,2013.
17 Zhu J X. Structure-activity relationship of organic montmorillonite sorption on organic pollutants in water. Postdoctoral Outbound Report, Zhejiang University,China,2005(in Chinese).
朱建喜.有机蒙脱石对水中有机污染物吸附的构效关系.博士后出站报告,浙江大学,2005.
18 Qing Y H. Structural characteristics and sorption properties of zwitterionic surfactant modified montmorillonite. Master's Thesis, University of Chinese Academy of Sciences,China,2011(in Chinese).
卿艳红.两性离子表面活性剂改性蒙脱石结构特征及其吸附性能的研究.硕士学位论文,中国科学院大学,2011.
19 Sun H L, Zhu L Z, Zhu J X. Chemical Journal of Chinese Universities,2011,32(8),1825(in Chinese).
孙洪良,朱利中,朱建喜.高等学校化学学报,2011,32(8),1825.
20 Zhu R L. Structure-activity relationship and sorption mechanism of organic bentonite. Ph. D. Thesis, Zhejiang University,China,2007(in Chinese).
朱润良.有机膨润土的构效关系及吸附机制.博士学位论文,浙江大学,2007.
21 Lagaly G, Dékány I. Chapter 8-Colloid Clay Science.//Bergaya F, Lagaly G. Developments in Clay Science, Elsevier,2013.
22 Bhattacharyya K G, Sen Gupta S. Advances in Colloid and Interface Science,2008,140(2),114.
23 Nafees M, Waseem A. Clean-Soil Air Water,2014,42(11),1500.
24 Zhu R L, Zhu J X, Ge F, et al. Journal of Environmental Management,2009,90(11),3212.
25 Herrera N N, Letoffe J M, Putaux J L, et al. Langmuir,2004,20(5),1564.
26 Lagaly G, Ogawa M, Dékány I. Chapter 10.3-Clay Mineral-Organic Interactions.//Bergaya F, Lagaly G. Developments in Clay Science, Elsevier,2013.
27 Zhou D J, Zhang Z P, Tang J L, et al. Applied Clay Science,2016,121,1.
28 Zhu J X, Qing Y H, Wang T, et al. Journal of Colloid and Interface Science,2011,360(2),386.
29 Yariv S, Cross H.Organo-clay complexes and interactions, USA, Marcel Dekker. Inc. 2002.
30 He H P, Ma Y H, Zhu J X, et al. Applied Clay Science,2010,48(1-2),67.
31 Lagaly G. Clay Minerals,1981,16(1),1.
32 Feng X Y, Hu G J, Meng X F, et al. Applied Clay Science,2009,45(4),239.
33 Lee J J, Choi J, Park J W. Chemosphere,2002,49(10),1309.
34 Zhu J X, Shen W, Ma Y H, et al. Journal of Thermal Analysis and Calorimetry,2012,109(1),301.
35 Zhuang G Z, Zhang Z P, Fu M, et al. Applied Clay Science,2015,116,257.
36 Vaia R A, Teukolsky R K, Giannelis E P. Chemistry of Materials,1994,6(7),1017.
37 Zhu J X, He H P, Zhu L Z, et al. Journal of Colloid and Interface Science,2005,286(1),239.
38 Zhou J H, Boek E S, Zhu J X, et al. Langmuir,2015,31(6),2008.
39 Zhou J H, Lu X C, Zhu J X, et al. Journal of Physical Chemistry C,2012,116(24),13071.
40 Wei J M, Yang H M, Zhu J X, et al. Journal of Mineralogy and Petrology,2009,29(1),33(in Chinese).
魏景明,杨华明,朱建喜,等.矿物岩石,2009,29(1),33.
41 Zhu J X, Zhou Q, He H P, et al. Bulletin of National Natural Science Foundation of China,2014,28(4),281(in Chinese).
朱建喜,周青,何宏平,等.中国科学基金,2014,28(4),281.
42 Chen B L, Zhu L Z, Zhu J X. Environmental Science & Technology,2005,39(16),6093.
43 Zhou Q, Shen W, Zhu J X, et al. Applied Clay Science,2014,97-98,62.
44 Ruan X X. Correlations between structures and sorption capacities of organobentonites and their molecular interaction mechanisms. Ph. D. Thesis, Zhejiang University, China,2008(in Chinese).
阮秀秀.有机膨润土的构-效关系及其分子作用机制.博士学位论文,浙江大学,2008.
45 Zhou Q, Zhu R L, Parker S C, et al. RSC Advances,2015,5(58),47022.
46 Li F, Rosen M J. Journal of Colloid and Interface Science,2000,224(2),265.
47 Xue G H, Gao M L, Gu Z, et al. Chemical Engineering Journal,2013,218,223.
48 Zhu J X, Zhang P, Qing Y H, et al. Applied Clay Science,2017,141,265.
49 Su L N. Conservation and Utilization of Mineral Resources,2019,39(1),124(in Chinese).
苏琳娜.矿产保护与利用,2019,39(1),124.
50 Ma L Y. Composite regulation of montmorillonite structure and surface properties and its effect on broad-spectrum adsorption of pollutants. Ph. D. Thesis, University of Chinese Academy of Sciences, China,2016(in Chinese).
马灵涯.蒙脱石结构与表面性质的复合调控及其对污染物广谱吸附性的影响.博士学位论文,中国科学院大学,2016.
51 Wu P X. Research to montmorillonite activation and its microstructure. Ph. D. Thesis, University of Chinese Academy of Sciences, China,1998(in Chinese).
吴平霄.蒙脱石活化及其与微结构变化关系研究.博士学位论文,中国科学院大学,1998.
52 Wu P X, Zhang H F, Guo J G, et al. Geological Science,2000(2),185(in Chinese).
吴平霄,张惠芬,郭九皋,等.地质科学,2000(2),185.
53 Vicente M A, Gil A, Bergaya F. Chapter 10.5-Pillared Clays and Clay Minerals.//Bergaya F, Lagaly G. Developments in Clay Science, Elsevier,2013.
54 Lin X Q, Wang Y B, Zhu J X, et al. Acta Mineralogica Sinica,2015,35(3),281(in Chinese).
林小琴,王钺博,朱建喜,等.矿物学报,2015,35(3),281.
55 Besson H, Caillere S, Henin S. Clay Minerals,1977,12(3),239.
56 Cooper C, Jiang J Q, Ouki S. Journal of Chemical Technology and Biotechnology,2002,77(5),546.
57 Molina C B, Casas J A, Zazo J A, et al. Chemical Engineering Journal,2006,118(1-2),29.
58 Bradley S M, Kydd R A. Catalysis Letters,1991,8(2),185.
59 Allouche L, Taulelle F. Inorganic Chemistry Communications,2003,6(9),1167.
60 Allouche L, Gerardin C, Loiseau T, et al. Angewandte Chemie-International Edition,2000,39(3),511.
61 Rowsell J, Nazar L F. Journal of the American Chemical Society,2000,122(15),3777.
62 Zhu J X, Wen K, Wang Y B, et al. Microporous and Mesoporous Mate-rials,2018,265,104.
63 Zhu J X, Wen K, Zhang P, et al. Microporous and Mesoporous Materials,2017,242,256.
64 Wen K, Zhu J X, Chen H L, et al. Langmuir,2019,35(2),382.
65 Wen K, Wei J, He H, et al. Applied Clay Science,2019,180,105203.
66 Xu T Y, Zhu R L, Zhu J X, et al. Applied Clay Science,2016,129,27.
67 Xu T Y, Zhu R L, Zhu J X, et al. Catalysis Science & Technology,2016,6(12),4116.
68 Matthes W, Madsen F T, Kahr G. Clays and Clay Minerals,1999,47(5),617.
69 Bhattacharyya K G, Sen Gupta S. Separation and Purification Technology,2006,50(3),388.
70 Guerra D L, Airoldi C, Lemos V P, et al. Journal of Hazardous Mate-rials,2008,155(1-2),230.
71 Wu P X, Wu W M, Li S Z, et al. Journal of Hazardous Materials,2009,169(1-3),824.
72 Manohar D M, Noeline B F, Anirudhan T S. Industrial & Engineering Chemistry Research,2005,44(17),6676.
73 Kasama T, Watanabe Y, Yamada H, et al. Applied Clay Science,2004,25(3-4),167.
74 Zhu L Z, Zhu R L. Separation and Purification Technology,2007,54(1),71.
75 Yan L G, Xu Y Y, Yu H Q, et al. Journal of Hazardous Materials,2010,179(1-3),244.
76 Grygar T, Hradil D, Bezdicka P, et al. Clays and Clay Minerals,2007,55(2),165.
77 Na P, Liu J F, Zhang H Y, et al. Abstracts of Papers of the American Chemical Society,2005,229,U52.
78 Lenoble V, Bouras O, Deluchat V, et al. Journal of Colloid and Interface Science,2002,255(1),52.
79 Tahani A, Karroua M, El Farissi M, et al. Journal De Chimie Physique Et De Physico-Chimie Biologique,1999,96(3),464.
80 Jiang J Q, Cooper C, Ouki S. Chemosphere,2002,47(7),711.
81 Wibulswas R, White D A, Rautiu R. Process Safety and Environmental Protection,1999,77(B2),88.
82 Zhou Q, He H P, Frost R L, et al. Journal of Physical Chemistry C,2007,111(20),7487.
83 Keizer P, Bruggenwert M G M. Adsorption of Heavy Metals by Clay-Aluminum Hydroxide Complexes.//Bolt G H, De Boodt M F, Hayes M H B, McBride M B, De Strooper E B A. Interactions at the Soil Colloid-Soil Solution Interface, Springer Netherlands,1991.
84 Polubesova T, Undabeytia T, Nir S, et al. Journal of Environmental Quality,2000,29(3),948.
85 Wang Y B, Zhang P, Wen K, et al. Microporous and Mesoporous Mate-rials,2016,224,285.
86 Wang Y B, Su X L, Lin X Q, et al. Applied Clay Science,2015,116,102.
87 Wang Y B, Su X L, Xu Z, et al. Applied Surface Science,2016,363,113.
88 Wang Y B. The structural and surface regulation of porous heterostructured montmorillonite for the adsorption of gaseous organic molecules. Ph. D. Thesis, University of Chinese Academy of Sciences, China,2016(in Chinese).
王钺博.蒙脱石多孔异质结构与表面性质调控及其对气态有机分子吸附的影响.博士学位论文,中国科学院大学,2016.
89 Ma LY, Zhu J X, Xi Y F, et al. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2016,497,63.
90 Zhu L Z, Tian S L, Zhu J X, et al. Journal of Colloid and Interface Science,2007,315(1),191.
91 Qin Z H, Yuan P, Zhu J X, et al. Applied Clay Science,2010,50(4),546.
92 Zhu R L, Zhu L Z, Zhu J X, et al. Journal of Hazardous Materials,2009,168(2-3),1590.
[1] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[2] 马茸茸, 张电, 刘一军, 刘静, 杨晓凤, 李延军, 马爱琼. 多孔氮化硅陶瓷的研究进展及构效关系中的矛盾平衡[J]. 材料导报, 2020, 34(9): 9101-9109.
[3] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[4] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[5] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[6] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[7] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[8] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[9] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[10] 季承维, 马爱斌, 江静华. 轻质高熵合金的研究现状与发展趋势[J]. 材料导报, 2020, 34(19): 19094-19100.
[11] 陈文华, 黄志义. 集料和纤维掺量对LTCC力学性能和微观结构的影响[J]. 材料导报, 2020, 34(18): 18049-18055.
[12] 辛雪, 苏林萍, 梁 明, 姚占勇, 范维玉, 南国枝, 张吉哲. 废胶粉改性制备高模量沥青及其动态力学性能[J]. 材料导报, 2020, 34(18): 18060-18064.
[13] 杨海鹏, 石玗, 林巧力, 慈文娟, 张刚. 铜表面微结构化对惰性润湿和反应润湿的影响[J]. 材料导报, 2020, 34(16): 16109-16113.
[14] 王爱国, 楚英杰, 徐海燕, 刘开伟, 马瑞, 董伟伟, 孙道胜. 碱式硫酸镁水泥的研究进展及性能提升技术[J]. 材料导报, 2020, 34(13): 13091-13099.
[15] 覃丽芳, 曲波, 史才军, 张祖华. 钙硅比对铝硅酸盐凝胶形成与特性的影响[J]. 材料导报, 2020, 34(12): 12057-12063.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed