Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9101-9109    https://doi.org/10.11896/cldb.19010034
  无机非金属及其复合材料 |
多孔氮化硅陶瓷的研究进展及构效关系中的矛盾平衡
马茸茸1, 张电1,2, 刘一军3, 刘静1, 杨晓凤1, 李延军1, 马爱琼1
1 西安建筑科技大学,材料科学与工程学院,西安 710055
2 中钢集团洛阳耐火材料研究院有限公司,先进耐火材料国家重点实验室,洛阳 471039
3 蒙娜丽莎集团股份有限公司,佛山 528211
Research Progress and Contradictory Equilibrium of Structure-Performance Relationship of Porous Silicon Nitride Ceramics
MA Rongrong1, ZHANG Dian1,2, LIU Yijun3, LIU Jing1, YANG Xiaofeng1, LI Yanjun1, MA Aiqiong1
1 College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 State Key Laboratory of Advance Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039, China
3 Monalisa Group Co. Ltd, Foshan 528211, China
下载:  全 文 ( PDF ) ( 10615KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多孔氮化硅陶瓷(Si3N4-PC)在流体过滤器、催化剂载体、宽频透波材料、复合材料乃至组织工程等领域存在广阔的应用前景。近年来,Si3N4-PC的研究主要致力于发展多种方法以提高气孔率并优化孔形貌,从而改善渗透率和比表面积等重要参数。通常,不完全烧结法制得的Si3N4-PC气孔率仅40%,而模板复制法和直接发泡法制得的Si3N4-PC气孔率高达70%以上,但其力学性能明显恶化,耐压强度仅为10 MPa。通过调控烧结工艺、原料和烧结剂,生成大量纤维状和柱状的微观组织,可使Si3N4-PC弯曲强度提高至100 MPa以上,然而,气孔率却降至55%以下。此外,一些研究将挤出成形法、牺牲模板法与不同烧结工艺相结合,试图形成耦合孔结构以兼顾气孔率和力学性能,但效果不佳。
当前研究中,Si3N4-PC的制备方法、孔结构和性能数据及其规律性缺乏梳理和总结,提高Si3N4-PC的综合性能遭遇瓶颈。实质上,气孔率和孔形貌是渗透率等参数的主要影响因素,而孔壁则是承受载荷的中心,孔壁的显微结构是Si3N4-PC力学性能的决定因素,并对比表面积等核心指标产生显著影响,而原料种类和高温过程是孔壁结构形成的基础和控制机制。
针对这些基本问题,本文分析了近年来Si3N4-PC的制备及应用等研究工作,将目前Si3N4-PC的制备方法归纳为两类,即通过烧结形成气孔法与通过成形引入气孔法。前者包括不完全烧结法、相变烧结法、反应烧结法和碳热还原氮化法,后者包括挤出成形法、直接发泡法、模板复制法和牺牲模板法等;分析了这些方法制备Si3N4-PC的特点和不足;通过文献数据汇总标明了当前Si3N4-PC的气孔率和强度等性能水平;揭示气孔率-强度及孔径-比表面积等构效关系中的矛盾平衡是制约其综合性能的瓶颈。基于颗粒原料及工艺,Si3N4-PC的综合性能难以突破,若采用Si3N4晶须和纤维等新原料并结合新工艺,则能从原料基础层面开始构建孔结构,显著提升Si3N4-PC的性能,使其在反辐射导弹雷达罩和膜材料等高价值领域获得应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马茸茸
张电
刘一军
刘静
杨晓凤
李延军
马爱琼
关键词:  多孔氮化硅陶瓷  构效关系  矛盾平衡  气孔率-强度  孔径-比表面积    
Abstract: Porous Si3N4 ceramics (Si3N4-PC) have a promising application prospect in the broadband wave-transparent materials, fluid filter, catalyst carrier, composite and even tissue engineering. In recent years, researches are dedicated to develop preparing methods of Si3N4-PC in order to promote the porosity and optimize the pore morphology, thereby improve the application properties such as permeability and specific surface area. Generally, the porosity of Si3N4-PC prepared by partial sintering is only 40% while that by template replication and direct foaming are higher than 70%. However, the latter two methods produce poor mechanical properties to low compressive strength level of 10 MPa. Controlling the sintering process, raw materials and sintering additives can produce massive fibers and columnar microstructures, which enhance the Si3N4-PC to gain high bending strength of 100 MPa. However, this leads to negative effect on porosity which is as low as 55%. In addition, some researches give consideration to both porosity and mechanical properties via coupling pore structure prepared by combining the extrusion and sacrificial template with varied sintering process. Nevertheless, the effect is not satisfactory.
The preparing methods, pore structures and properties data in current researches of Si3N4-PC as well as the relationship among them need to be classified and summarized. The improvement of comprehensive performance of current Si3N4-PC encounter bottleneck. In essence, the poro-sity and pore morphology determine application properties such as the permeability of Si3N4-PC. The pore wall is the load-bearer and its microstructure is the deci-sive factor of mechanical properties and also of great significance on core indicators such as specific surface area. The species of raw materials and sintering process are substance and control mechanism of pore wall microstructures.
This review analyzes current researches about the preparations and applications of Si3N4-PC and classifies its preparations methods as two categories, i.e. producing pores via sintering and introducing pores via shaping. The former includes partial sintering, phase transformation sintering, reaction sintering and carbothermal reduction nitriding, while the later includes extrusion, direct foaming, template replication, sacrificial template, etc. These characteristics and disadvantages of Si3N4-PC prepared by these methods are discussed. The level of properties, such as strength and porosity, of current Si3N4-PC is marked out via data collection from references. Therein, the structure-performance relationships, such as strength-porosity and pore diameter-specific surface area, are in contradictory equilibrium, resulting in bottleneck of the comprehensive properties. It is hard to address the comprehensive properties of Si3N4-PC on the basis of raw particulate materials and corresponding process. If the newly developed Si3N4 whiskers and fibers as well as new processes are adopted, there are chances to build up the pore structures of Si3N4-PC via starting materials. So, the properties of Si3N4-PC could be promoted to a higher level and fit for high value applications such as radome of anti-radar missiles and membrane materials.
Key words:  porous silicon nitride ceramics    structure-performance relationship    contradictory equilibrium    porosity-strength    pore diameter-specific surface area
                    发布日期:  2020-04-27
ZTFLH:  TQ174  
基金资助: 陕西省重点研发计划(2018GY-113);先进耐火材料国家重点实验室开放课题(201804);西安建筑科技大学材料科学与工程学院青年博士基金项目
通讯作者:  zhangdian@xauat.edu.cn; yjlliu@162.com   
作者简介:  马茸茸,硕士研究生,就读于西安建筑科技大学材料科学与工程学院。主要的研究领域为多孔氮化硅陶瓷的制备及性能调控。
张电,讲师,西安建筑科技大学材料科学与工程学院。2006年毕业于西北工业大学材料学专业,获工学硕士学位,2015年毕业于北京航空航天大学凝聚态物理学专业,获理学博士学位。从事氮化物材料的微纳结构、晶体、陶瓷和复合材料等基础研究。
刘一军,博士,教授级高级工程师,博士研究生导师,享受国务院政府特殊津贴专家。获授权发明专利53件,发表论文18篇;中国轻工业联合会科技进步一等奖2项,中国建筑材料联合会科技进步一等奖2项,广东省科技进步二等奖三项。
引用本文:    
马茸茸, 张电, 刘一军, 刘静, 杨晓凤, 李延军, 马爱琼. 多孔氮化硅陶瓷的研究进展及构效关系中的矛盾平衡[J]. 材料导报, 2020, 34(9): 9101-9109.
MA Rongrong, ZHANG Dian, LIU Yijun, LIU Jing, YANG Xiaofeng, LI Yanjun, MA Aiqiong. Research Progress and Contradictory Equilibrium of Structure-Performance Relationship of Porous Silicon Nitride Ceramics. Materials Reports, 2020, 34(9): 9101-9109.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010034  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9101
1 Scheffle M, Colombo P. Cellular Ceramics: structure, manufacturing, properties and applications, Wiley-VCH Verlag GmbH, UK,2006.
2 Studart A R, Gonzenbach U T, Tervoort E, et al. Journal of the American Ceramic Society,2006,89(6),1771.
3 Ohji T, Fukushima M. International Materials Reviews,2012,57(2),115.
4 Colombo P. Philosophical Transactions: Mathematical, Physical and Engineering Sciences,2006,364(1838),109.
5 Ding S Q, Zeng Y P, Jiang D L. Materials Letters,2007,61(12),2277.
6 Ding S Q, Zeng Y P, Jiang D L. Key Engineering Materials,2007,84(711),503.
7 Plucknett K P, Quinlan M, Garrido L, et al. Materials Science and Engineering: A,2008,489(1),337.
8 Yang J F, Deng Z Y, Ohji T. Journal of the European Ceramic Society,2003,23(2),371.
9 Kawai C, Yamakawa A. Journal of the American Ceramic Society,2010,80(10),2705.
10 Zou C R, Zhang C R, Li B, et al. Materials & Design,2013,44,114.
11 Li L Y, Wang H J, Su S C. Journal of Materials Science & Technology,2015,3 295.
12 Yao D X, Xia Y F, Zeng Y P, et al. Ceramics International,2011,37(8),3071.
13 Yao D X, Xia Y F, Zuo K H, et, al. Journal of the European Ceramic Society,2014,34(15),3461.
14 Yao D X, Xia Y F, Zuo K H. Journal of the European Ceramic Society,2013,33(2),371.
15 Yang J F, Shan S Y, Janssen R, et al. Acta Materialia,2005,53(10),2981.
16 Shan S Y,Yang J F,Lu Y, et al. Scripta Materialia,2007,56(3),193.
17 Xue Y H, Lu Y, Wang B, et, al. Materials Science Forum,2009,4(28),753.
18 Shan S Y, Jia Q M, Wang Y M, et al. Advanced Materials Research,2011,1333(570),1339.
19 Yu F L, Wang H R, Yang J F, et al. Bulletin of Materials Science,2010,33(3),285.
20 Park D S, Lee M W, Kim H D, et al. Key Engineering Materials,2005,287,277.
21 Lee B T, Paul R K, Lee C W, et al. Materials Letters,2007,61(11),2182.
22 Miyakawa N, Sato H, Maeno H, et al. JSAE Review,2003,24(3),269.
23 Yu J L, Yang J L, Li H X, et al. Journal of Porous Materials,2012,19(5),883.
24 Yu J L, Yang J L, Zeng Q C, et al. Ceramics International,2013,39(3),2775.
25 Yin L Y, Zhou X G, Yu J S, et al. Ceramics International,2013,39(1),445.
26 Yin L Y, Zhou X G, Yu J S, et al. Materials & Design,2016,89(5),620.
27 Chen M,Wang C, Wang H J, et al.Materials Letters,2014,132(10),119.
28 Çalikan F, Demir A, Tatli Z. Journal of Porous Materials,2013,20(6),1501.
29 Yue H Z, Wang X, Tian J T. Ceramics International,2014,40(6),8525.
30 Zhu X W, Jiang D L, Tan S H, et al. Journal of the American Ceramic Society.2004,84(7),1654.
31 Vogt U F, Gorbar M, Dimopoulos, et al. Journal of the European Ceramic Society,2010,30(15),3005.
32 Bodišová K, Kašiarová M, Domanická M, et al. Ceramics International,2013,39(7),8355.
33 Xia Y F, Zeng Y P, Jiang D L. Ceramics International,2009,35(4),1699.
34 Xia Y F, Zeng Y P, Jiang D L. Ceramics International,2011,37(8),3775.
35 Yue J S, Dong B C, Wang H J. Journal of the American Ceramic Society,2011,94(7),1989.
36 Ye F, Zhang J Y, Liu L M, et al. Materials Science and Engineering: A,2011,528(3),1421.
37 Kalemtas A, Topates G, zcoban H, et al. Journal of the European Ceramic Society,2013,33(9),1507.
38 Topateš G, Petasch U, Adler J, et al. Journal of Asian Ceramic Societies,2013,1(3),257.
39 Jia C D, Song G M. Properties of inorganic nonmetallic materials, Science Press, China,2008(in Chinese).
贾德昌,宋桂明.无机非金属材料性能,科学出版社,2008.
40 Liu P S, Chen G F. Porous Materials: Processing and applications. Butterworth-Heinemann, US,2014.
[1] 陈明军. 涂料用分散剂研究进展[J]. 材料导报, 2019, 33(Z2): 643-645.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed